Single identified hadron spectra from s(NN)**1/2 = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 69 (2004) 024904, 2004.
Inspire Record 623413 DOI 10.17182/hepdata.149578

Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.

30 data tables

The sources of systematic uncertainties in $\langle p_T \rangle$ and $dN$/$dy$.

The $dN$/$dy$ at midrapidity for hadrons produced at midrapidity in each centrality class.

The resulting inverse slopes in MeV after fitting an $m_T$ exponential to the spectra in the range $m_T$-$m_0$ < 1 GeV in each event centrality classes. The pion resonance region is excluded in the fits. The equivalent $p_T$ fit range for each particle is shown accordingly.

More…

Differential measurements of jet substructure and partonic energy loss in Au+Au collisions at $\sqrt {S_{NN}}$ =200 GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 105 (2022) 044906, 2022.
Inspire Record 1925052 DOI 10.17182/hepdata.113875

The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn $= 200$ GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg. We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance ($A_{\rm{J}}$) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range $0.1 < $\tsj $ < 0.3$, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.

54 data tables

$z_{g}$ for HardCore Trigger jets in AuAu Data anti-kT R$=$0.4

$z_{g}$ for HardCore Trigger jets in pp$+$AuAu Data anti-kT R$=$0.4

$z_{g}$ for Matched Trigger jets in AuAu Data anti-kT R$=$0.4

More…

Observation of the electromagnetic field effect via charge-dependent directed flow in heavy-ion collisions at the Relativistic Heavy Ion Collider

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.X 14 (2024) 011028, 2024.
Inspire Record 2649979 DOI 10.17182/hepdata.139915

The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Non-central collisions can produce strong magnetic fields on the order of $10^{18}$ Gauss, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and anti-quarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final-state particles, specifically in the rapidity-odd directed flow, denoted as $v_1(\mathsf{y})$. Here we present the charge-dependent measurements of $dv_1/d\mathsf{y}$ near midrapidities for $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ in Au+Au and isobar ($_{44}^{96}$Ru+$_{44}^{96}$Ru and $_{40}^{96}$Zr+$_{40}^{96}$Zr) collisions at $\sqrt{s_{\rm NN}}=$ 200 GeV, and in Au+Au collisions at 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the $v_1$ signal on collision system, particle species, and collision centrality can be qualitatively and semi-quantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the $u$ and $d$ quarks transported from initial-state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations.

9 data tables

Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 200 GeV 50-80% centrality.

Directed flow of $p$ and $\bar{p}$ vs rapidity in Zr+Zr and Ru+Ru 200 GeV (combined) 50-80% centrality.

Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 27 GeV 50-80% centrality.

More…

Net charge fluctuations in Au + Au interactions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 082301, 2002.
Inspire Record 584417 DOI 10.17182/hepdata.143184

Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the PHENIX detector at RHIC, are used to investigate local net charge fluctuations among particles produced near mid-rapidity. According to recent suggestions, such fluctuations may carry information from the Quark Gluon Plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.

5 data tables

The normalized variance $v(Q)$as a function of $n_{ch}$.

The normalized variance $v(R)$ as a function of $n_{ch}$.

The normalized variance $v(Q)$ for different centrality classes.

More…

Event-by-event fluctuations in mean p(T) and mean e(T) in s(NN)**(1/2) = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 66 (2002) 024901, 2002.
Inspire Record 584452 DOI 10.17182/hepdata.143150

Distributions of event-by-event fluctuations of the mean transverse momentum and mean transverse energy near mid-rapidity have been measured in Au+Au collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to what is expected for statistically independent particle emission, the magnitude of non-statistical fluctuations in mean transverse momentum is determined to be consistent with zero. Also, no significant non-random fluctuations in mean transverse energy are observed. By constructing a fluctuation model with two event classes that preserve the mean and variance of the semi-inclusive p_T or e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au collisions.

5 data tables

The $N_{tracks}$ distribution for the $0-10\%$ centrality class (data points) compared to the $N_{mix}$ distribution from the mixed event sample (curve).

The $M_{p_T}$ distributions for four different centrality classes. The curves are the random baseline mixed event distributions.

The residual distribution between the data and mixed event $M_{p_T}$ in units of standard deviations for all centrality classes. The total ${\chi}^2$ and the number of degrees of freedom for the $0-5\%$, $0-10\%$, $10-20\%$, $20-30\%$ centrality classes are 89.0/39, 155.7/40,163.3/47, and 218.4/61, respectively.

More…

Measurement of single electrons and implications for charm production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 192303, 2002.
Inspire Record 582654 DOI 10.17182/hepdata.142963

Transverse momentum spectra of electrons from Au+Au collisions at sqrt(s_NN) = 130 GeV have been measured by the PHENIX experiment at RHIC. The spectra show an excess above the background from photon conversions and light hadron decays. The electron signal is consistent with that expected from semi-leptonic decays of charm. The yield of the electron signal dN_e/dy for p_T > 0.8 GeV/c is 0.025 +/- 0.004 (stat.) +/- 0.010 (sys.) in central collisions, and the corresponding charm cross section is 380 +/- 60 (stat.) +/- 200 (sys.) micro barns per binary nucleon-nucleon collision.

8 data tables

Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.

Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.

Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. The upper limit for 1.9 GeV/$c$ is 4.10224e-05.

More…

Flow measurements via two-particle azimuthal correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 212301, 2002.
Inspire Record 585347 DOI 10.17182/hepdata.141931

Two particle azimuthal correlation functions are presented for charged hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The measurements permit determination of elliptic flow without event-by-event estimation of the reaction plane. The extracted elliptic flow values v_2 show significant sensitivity to both the collision centrality and the transverse momenta of emitted hadrons, suggesting rapid thermalization and relatively strong velocity fields. When scaled by the eccentricity of the collision zone, epsilon, the scaled elliptic flow shows little or no dependence on centrality for charged hadrons with relatively low p_T. A breakdown of this epsilon scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most central collisions.

8 data tables

Azimuthal correlation functions for charged hadrons as a function of centrality and $p_T$ selection. The solid curves represent Fourier fits following Eq. (2). Error bars are statistical only.

$v_2$ vs. centrality for several $p_T$ selections. [F] and [A] indicate results obtained with the fixed-$p_T$ and assorted-$p_T$ methods respectively. Systematic errors are estimated to be $\sim 5$%; they are dominated by the normalization of the correction function for real tracks. For the centrality range 0-5%, the data points are statistically uncertain and the points are omitted.

$v_2$ vs. centrality for several $p_T$ selections. [F] and [A] indicate results obtained with the fixed-$p_T$ and assorted-$p_T$ methods respectively. Systematic errors are estimated to be $\sim 5$%; they are dominated by the normalization of the correction function for real tracks. For the centrality range 0-5%, the data points are statistically uncertain and the points are omitted.

More…

Centrality dependence of the high p(T) charged hadron suppression in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, Stephen Scott ; Ajitanand, N.N. ; et al.
Phys.Lett.B 561 (2003) 82-92, 2003.
Inspire Record 590820 DOI 10.17182/hepdata.141648

PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.

6 data tables

Number of participants and binary collisions and their systematic errors for the individual centrality selections used in this analysis. Also given is the ratio of the number of binary collisions for the most central sample relative to the one for each sample. The last column quantifies the ratio of binary collisions to participant pairs.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the $p_T$ dependence of $p/h$ for minimum bias events.

The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the centrality dependence of $p/h$ for $p_T >$ 1.8 GeV/$c$.

More…

Version 3
Observation of $D^0$ meson nuclear modifications in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 142301, 2014.
Inspire Record 1292132 DOI 10.17182/hepdata.73474

In this erratum we report changes on the $D^0$ $p_T$ spectra and nuclear modification factor ($R_{AA}$) in Au+Au collisions at $\sqrt{s_{_{\mathrm{NN}}}}$ = 200 GeV by fixing the errors in the efficiency and selection criteria that affected the Au+Au results. The p+p reference spectrum has changed as well and is updated with new fragmentation parameters.

4 data tables

$D^0$ $p_{\rm T}$ differential invariant yield in p+p collisions (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The systematic uncertainties are shown as square brackets.

Centrality dependence of the $D^0$ $p_{\rm T}$ differential invariant yield in Au+Au collisions (solid symbols). The curves are number-of-binary-collision-scaled Levy functions from fitting to the p+p result (open circles), which has been updated with the latest global analysis of charm fragmentation ratios from Ref and also taking into account the $p_{\rm T}$ dependence of the fragmentation ratio between $D^0$ and $D^{*{\pm}}$ from PYTHIA 6.4. The arrow denotes the upper limit with 90% confidence level of the last data point for 10$-$40% collisions. The systematic uncertainties are shown as square brackets.

Panels (ab), $D^0$ $R_{\rm AA}$ for peripheral 40$-$80% and semi a central 10$-$40% collisions; Panel (c), $D^0$ $R_{\rm AA}$ for 0$-$10% most central events (blue circles) compared with model calculations from the TAMU (solid curve), SUBATECH (dashed curve), Torino (dot-dashed curve), Duke (long-dashed and long-dot-dashed curves), and LANL groups (filled band). The open symbol indicates the result with the extrapolated p+p reference. The vertical lines and brackets around the data points denote the statistical and systematic uncertainties respectively. The vertical bars around unity denote the overall normalization uncertainties in the Au+Au and p+p data, respectively. The $R_{\rm AA}$ probability distribution for the 0$-$0.7 GeV/$c$ data point is largely skewed. The uncertainty we report is the 68.3% probability range with respect to the measured central value assuming Gaussian distribution.

More…

Transverse mass dependence of two-pion correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 192302, 2002.
Inspire Record 581871 DOI 10.17182/hepdata.141647

Two-pion correlations in sqrt(s_NN)=130 GeV Au+Au collisions at RHIC have been measured over a broad range of pair transverse momentum k_T by the PHENIX experiment at RHIC. The k_T dependent transverse radii are similar to results from heavy ion collisions at sqrt(s_NN) = 4.1, 4.9, and 17.3 GeV, whereas the longitudinal radius increases monotonically with beam energy. The ratio of the outwards to sidewards transverse radii (R_out/R_side) is consistent with unity and independent of k_T.

6 data tables

HBT radii for pion pairs as a function of $k_T$ measured at mid-rapidity for various energies for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. Values used are from the Longitudinal Co-Moving System (LCMS) frame.

HBT radii for pion pairs as a function of $k_T$ measured at mid-rapidity for various energies for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. Values used are from the Pair Center-of-Mass System (PCMS) frame.

The top panel shows the measured $R_{side}$ from identical pions for PHENIX. The bottom panel shows the ratio $R_{out}/R_{side}$ as a function of $k_T$. Longitudinal Co-Moving System (LCMS) frame for $\pi^+$

More…

Inclusive photon production at forward rapidities in pp and p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 661, 2023.
Inspire Record 2637678 DOI 10.17182/hepdata.141495

A study of multiplicity and pseudorapidity distributions of inclusive photons measured in pp and p$-$Pb collisions at a center-of-mass energy per nucleon$-$nucleon collision of $\sqrt{s_{\rm NN}} = 5.02$ TeV using the ALICE detector in the forward pseudorapidity region $2.3 < \eta_{\rm lab} < 3.9$ is presented. Measurements in p$-$Pb collisions are reported for two beam configurations in which the directions of the proton and lead ion beam were reversed. The pseudorapidity distributions in p$-$Pb collisions are obtained for seven centrality classes which are defined based on different event activity estimators, i.e., the charged-particle multiplicity measured at midrapidity as well as the energy deposited in a calorimeter at beam rapidity. The inclusive photon multiplicity distributions for both pp and p$-$Pb collisions are described by double negative binomial distributions. The pseudorapidity distributions of inclusive photons are compared to those of charged particles at midrapidity in \pp collisions and for different centrality classes in p$-$Pb collisions. The results are compared to predictions from various Monte Carlo event generators. None of the generators considered in this paper reproduces the inclusive photon multiplicity distributions in the reported multiplicity range. The pseudorapidity distributions are, however, better described by the same generators.

19 data tables

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in pp collisions at $\sqrt{s} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

Inclusive photon multiplicity distribution measured within $2.3<\eta_{\rm lab}<3.9$ in Pb-p collisions at $\sqrt{s_\mathrm{NN}} = 5020~\mathrm{GeV}$.

More…

Pion, Kaon, and (Anti-)Proton Production in U+U Collisions at $\sqrt{s_{NN}}$ = 193 GeV in STAR

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 107 (2023) 024901, 2023.
Inspire Record 2629622 DOI 10.17182/hepdata.132660

We present the first measurements of transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$, $p(\bar{p})$ at midrapidity ($|y| < 0.1$) in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The centrality dependence of particle yields, average transverse momenta, particle ratios and kinetic freeze-out parameters are discussed. The results are compared with the published results from Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV in STAR. The results are also compared to those from A Multi Phase Transport (AMPT) model.

20 data tables

'Identified transverse momentum spectra of $\pi^{+}$ at midrapidity (|y| < 0.1) in U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV'

'Identified transverse momentum spectra of $K^{+}$ at midrapidity (|y| < 0.1) in U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV'

'Identified transverse momentum spectra of p at midrapidity (|y| < 0.1) in U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV'

More…

Measurement of the Lambda and Antilambda particles in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 89 (2002) 092302, 2002.
Inspire Record 585561 DOI 10.17182/hepdata.139716

We present results on the measurement of lambda and lambda^bar production in Au+Au collisions at sqrt(s_NN)=130 GeV with the PHENIX detector at RHIC. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The lambda^bar/lambda ratios are constant as a function of p_T and the number of participants. The measured net lambda density is significantly larger than predicted by models based on hadronic strings (e.g. HIJING) but in approximate agreement with models which include the gluon junction mechanism.

9 data tables

Transverse momentum spectra of $\Lambda$ and $\bar{\Lambda}$ for minimum-bias and for the $5\%$ most central events.

The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of $p_T$.

The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of the number of participants.

More…

Observation of Global Spin Alignment of $\phi$ and $K^{*0}$ Vector Mesons in Nuclear Collisions

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Nature 614 (2023) 244-248, 2023.
Inspire Record 2063245 DOI 10.17182/hepdata.129067

Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely $\phi$ and $K^{*0}$, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for $\phi$ is unexpectedly large, while that for $K^{*0}$ is consistent with zero. The observed spin-alignment pattern and magnitude for the $\phi$ cannot be explained by conventional mechanisms, while a model with a connection to strong force fields, i.e. an effective proxy description within the Standard Model and Quantum Chromodynamics, accommodates the current data. This connection, if fully established, will open a potential new avenue for studying the behaviour of strong force fields.

38 data tables

Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$

Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$

Example of combinatorial background subtracted invariant mass distributions and the extracted yields as a function of $\cos \theta^*$ for $\phi$ and $K^{*0}$ mesons. \textbf{a)} example of $\phi \rightarrow K^+ + K^-$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{b)} example of $K^{*0} (\overline{K^{*0}}) \rightarrow K^{-} \pi^{+} (K^{+} \pi^{-})$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{c)} extracted yields of $\phi$ as a function of $\cos \theta^*$; \textbf{d)} extracted yields of $K^{*0}$ as a function of $\cos \theta^*$.

More…

Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.C 106 (2022) 034908, 2022.
Inspire Record 1800376 DOI 10.17182/hepdata.95210

Quark interactions with topological gluon configurations can induce local chirality imbalance and parity violation in quantum chromodynamics, which can lead to the chiral magnetic effect (CME) -- an electric charge separation along the strong magnetic field in relativistic heavy-ion collisions. The CME-sensitive azimuthal correlator observable ($\Delta\gamma$) is contaminated by background arising, in part, from resonance decays coupled with elliptic anisotropy ($v_{2}$). We report here differential measurements of the correlator as a function of the pair invariant mass ($m_{\rm inv}$) in 20-50% centrality Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$= 200 GeV by the STAR experiment at RHIC. Strong resonance background contributions to $\Delta\gamma$ are observed. At large $m_{\rm inv}$ where this background is significantly reduced, the $\Delta\gamma$ value is found to be significantly smaller. An event-shape-engineering technique is deployed to determine the $v_{2}$ background shape as a function of $m_{\rm inv}$. We extract a $v_2$-independent and $m_{\rm inv}$-averaged signal $\Delta\gamma_{\rm sig}$ = (0.03 $\pm$ 0.06 $\pm$ 0.08) $\times10^{-4}$, or $(2\pm4\pm5)\%$ of the inclusive $\Delta\gamma(m_{\rm inv}>0.4$ GeV/$c^2$)$ =(1.58 \pm 0.02 \pm 0.02) \times10^{-4}$, within pion $p_{T}$ = 0.2 - 0.8~\gevc and averaged over pseudorapidity ranges of $-1 < \eta < -0.05$ and $0.05 < \eta < 1$. This represents an upper limit of $0.23\times10^{-4}$, or $15\%$ of the inclusive result, at $95\%$ confidence level for the $m_{\rm inv}$-integrated CME contribution.

9 data tables

The $m_{\rm inv}$ dependences of the OS and SS pion pair multiplicities in 20-50$\%$ Au+Au collisions at 200 GeV.

The $m_{\rm inv}$ dependences of the $\gamma_{OS}$, $\gamma_{SS}$ in 20-50$\%$ Au+Au collisions at 200 GeV.

$m_{\rm inv}$ dependences of the relative excess of OS over SS pion pairs in 20-50$\%$ Au+Au collisions at 200 GeV.

More…

Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abdallah, M.S. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 128 (2022) 092301, 2022.
Inspire Record 1869023 DOI 10.17182/hepdata.127969

The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.

16 data tables

The centrality dependencies of the $v_{2}\{\psi_\mathrm{TPC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

The centrality dependencies of the $v_{2}\{\psi_\mathrm{ZDC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

The centrality dependencies of the $\Delta\gamma\{\psi_\mathrm{TPC}\}$ for Au+Au collision at $\sqrt{s_{\rm NN}}$=200 GeV.

More…

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Di-electron spectrum at mid-rapidity in $p+p$ collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 86 (2012) 024906, 2012.
Inspire Record 1107765 DOI 10.17182/hepdata.116553

We report on mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via $e^{+}e^{-}$ decays, from $\sqrt{s} = 200$ GeV $p+p$ collisions, measured by the large acceptance experiment STAR at RHIC. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted $\omega\rightarrow e^{+}e^{-}$ invariant yields are consistent with previous measurements. The mid-rapidity yields ($dN/dy$) of $\phi$ and $J/\psi$ are extracted through their di-electron decay channels and are consistent with the previous measurements of $\phi\rightarrow K^{+}K^{-}$ and $J/\psi\rightarrow e^{+}e^{-}$. Our results suggest a new upper limit of the branching ratio of the $\eta \rightarrow e^{+}e^{-}$ of $1.7\times10^{-5}$ at 90% confidence level.

16 data tables

The electron-pair invariant mass distri- butions for unlike-sign pairs in minimum-bias p + p collisions.

The electron-pair invariant mass distributions for like-sign pairs in minimum-bias p + p collisions.

The electron-pair invariant mass distributions for mix-event pairs in minimum-bias p + p collisions.

More…

Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

2 data tables

Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.

Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.


Global polarization of $\Xi$ and $\Omega$ hyperons in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.Lett. 126 (2021) 162301, 2021.
Inspire Record 1838481 DOI 10.17182/hepdata.100234

Global polarization of $\Xi$ and $\Omega$ hyperons has been measured for the first time in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The measurements of the $\Xi^-$ and $\bar{\Xi}^+$ hyperon polarization have been performed by two independent methods, via analysis of the angular distribution of the daughter particles in the parity violating weak decay $\Xi\rightarrow\Lambda+\pi$, as well as by measuring the polarization of the daughter $\Lambda$-hyperon, polarized via polarization transfer from its parent. The polarization, obtained by combining the results from the two methods and averaged over $\Xi^-$ and $\bar{\Xi}^+$, is measured to be $\langle P_\Xi \rangle = 0.47\pm0.10~({\rm stat.})\pm0.23~({\rm syst.})\,\%$ for the collision centrality 20%-80%. The $\langle P_\Xi \rangle$ is found to be slightly larger than the inclusive $\Lambda$ polarization and in reasonable agreement with a multi-phase transport model (AMPT). The $\langle P_\Xi \rangle$ is found to follow the centrality dependence of the vorticity predicted in the model, increasing toward more peripheral collisions. The global polarization of $\Omega$, $\langle P_\Omega \rangle = 1.11\pm0.87~({\rm stat.})\pm1.97~({\rm syst.})\,\%$ was obtained by measuring the polarization of daughter $\Lambda$ in the decay $\Omega \rightarrow \Lambda + K$, assuming the polarization transfer factor $C_{\Omega\Lambda}=1$.

4 data tables

$\Xi$ and $\Omega$ global polarization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.

The energy dependence of $\Lambda$ and $\bar{\Lambda}$ global polarization. Note that the results from previous measurements are rescaled using updated decay parameters (PDG2020), $\alpha_{\Lambda}$=0.732 and $\alpha_{\bar{\Lambda}}$=-0.758. The original data can be found in <a href="https://www.hepdata.net/record/ins1510474">this page</a>.

Centrality dependence of $\Xi$ global poalrization in Au+Au collisions at 200 GeV. Decay parameter from PDG2020, $\alpha_{\Xi}$=-$\alpha_{\bar{\Xi}}$=-0.401, is used.

More…

Suppression of hadrons with large transverse momentum in central Au+Au collisions at s(NN)**(1/2) = 130-GeV

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 022301, 2002.
Inspire Record 562409 DOI 10.17182/hepdata.110700

Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c $< p_T <$ 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV. At high $p_T$ the spectra from peripheral nuclear collisions are consistent with the naive expectation of scaling the spectra from p+p collisions by the average number of binary nucleon- nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary- scaled p+p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear effect in central nuclear collisions at RHIC energies.

12 data tables

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-80% from the PbSc detector.

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 60-80% from the PbSc detector.

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-10% from the PbGl detector.

More…

Version 2
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 704 (2011) 467-473, 2011.
Inspire Record 914546 DOI 10.17182/hepdata.102406

We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.

14 data tables

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 70-80% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 70-80% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 30-40% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

More…

Observation of $D_{s}^{\pm}/D^0$ enhancement in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.Lett. 127 (2021) 092301, 2021.
Inspire Record 1843268 DOI 10.17182/hepdata.101172

We report on the first measurement of charm-strange meson $D_s^{\pm}$ production at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV from the STAR experiment. The yield ratio between strange ($D_{s}^{\pm}$) and non-strange ($D^{0}$) open-charm mesons is presented and compared to model calculations. A significant enhancement, relative to a PYTHIA simulation of $p$+$p$ collisions, is observed in the $D_{s}^{\pm}/D^0$ yield ratio in Au+Au collisions over a large range of collision centralities. Model calculations incorporating abundant strange-quark production in the quark-gluon plasma (QGP) and coalescence hadronization qualitatively reproduce the data. The transverse-momentum integrated yield ratio of $D_{s}^{\pm}/D^0$ at midrapidity is consistent with a prediction from a statistical hadronization model with the parameters constrained by the yields of light and strange hadrons measured at the same collision energy. These results suggest that the coalescence of charm quarks with strange quarks in the QGP plays an important role in $D_{s}^{\pm}$ meson production in heavy-ion collisions.

10 data tables

The $KK\pi$ invariant mass distribution (Counts per 8 MeV/$c^{2}$ bin) for right-sign combinations in 0-80% Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV.

$D_s^{\pm}$ invariant yield as a function of $p_{T}$ in 0-10% centrality bin of Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV. The $p_T$ bins are 1.5 < $p_T$ < 2.5 GeV/c, 2.5 < $p_T$ < 3.5 GeV/c, 3.5 < $p_T$ < 5.0 GeV/c and 5.0 < $p_T$ < 8.0 GeV/c.

$D_s^{\pm}$ invariant yield as a function of $p_{T}$ in 10-40% centrality bin of Au+Au collisions at $\sqrt{s_{_{\rm NN}}}$ = 200 GeV. The $p_T$ bins are 1.0 < $p_T$ < 2.0 GeV/c, 2.0 < $p_T$ < 2.5 GeV/c, 2.5 < $p_T$ < 3.5 GeV/c, 3.5 < $p_T$ < 5.0 GeV/c and 5.0 < $p_T$ < 8.0 GeV/c.

More…

Rapidity dependence of deuteron production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 83 (2011) 044906, 2011.
Inspire Record 856692 DOI 10.17182/hepdata.89452

We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-protons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the "volume of homogeneity" and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.

25 data tables

$C_{\Lambda}(p_{\mathrm{T}})$ versus $p_{\mathrm{T}}$ for $\mathrm{\Lambda}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=[0, 1, 2, 3]$ for $0-20$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0$ for $0-20$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{d}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$ near $y=0$ for $0-20$% central

More…

Rapidity dependence of antiproton to proton ratios in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112305, 2001.
Inspire Record 558361 DOI 10.17182/hepdata.110347

Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.

6 data tables

$\overline{\mathrm{p}}/\mathrm{p}$ versus $\mathrm{Centrality}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

More…

Rapidity Dependence of Charged Antiparticle-to-Particle Ratios in Au+Au Collisions at $\sqrt{s_{NN}}=200$ GeV

The BRAHMS collaboration Bearden, I.G. ; Beavis, D. ; Besliu, C. ; et al.
Phys.Rev.Lett. 90 (2003) 102301, 2003.
Inspire Record 590481 DOI 10.17182/hepdata.110251

We present ratios of the numbers of charged antiparticles to particles (pions, kaons and protons) in Au + Au collisions at $\sqrt{s_{NN}}=200$ GeV as a function of rapidity in the range $y$=0-3. While the particle ratios at midrapidity are approaching unity, the $K^-/K^+$ and $\bar{p}/p$ ratios decrease significantly at forward rapidities. An interpretation of the results within the statistical model indicates a reduction of the baryon chemical potential from $\mu_B \approx 130$MeV at $y$=3 to $\mu_B \approx 25$MeV at $y$=0.

11 data tables

$\mathrm{\pi}^{-}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{\pi}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\mathrm{K}^{-}/\mathrm{K}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$, $\mathrm{K}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Charged particle densities from Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The BRAHMS collaboration Bearden, I.G ; Beavis, D ; Besliu, C ; et al.
Phys.Lett.B 523 (2001) 227-233, 2001.
Inspire Record 561518 DOI 10.17182/hepdata.110252

We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An integral charged particle multiplicity of 3860+/-300 is found for the 5% most central events within the pseudorapidity range -4.7 <= eta <= 4.7. At mid-rapidity an enhancement in the particle yields per participant nucleon pair is observed for central events. Near to the beam rapidity, a scaling of the particle yields consistent with the ``limiting fragmentation'' picture is observed. Our results are compared to other recent experimental and theoretical discussions of charged particle densities in ultra-relativistic heavy-ion collisions.

7 data tables

NPART, $\mathrm{d}N/\mathrm{d}\eta$, $N_{\mathrm{ch}}^{\mathrm{tot}}$ versus $\mathrm{Centrality}$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\mathrm{d}N/\mathrm{d}\eta$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

$\mathrm{d}N/\mathrm{d}\eta$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$

More…

Longitudinal double-spin asymmetry for inclusive jet and dijet production in $pp$ collisions at $\sqrt{s} = 510$ GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.D 100 (2019) 052005, 2019.
Inspire Record 1738738 DOI 10.17182/hepdata.105278

We report the first measurement of the inclusive jet and the dijet longitudinal double-spin asymmetries, $A_{LL}$, at midrapidity in polarized $pp$ collisions at a center-of-mass energy $\sqrt{s} = 510$ GeV. The inclusive jet $A_{LL}$ measurement is sensitive to the gluon helicity distribution down to a gluon momentum fraction of $x\approx 0.015$, while the dijet measurements, separated into four jet-pair topologies, provide constraints on the $x$ dependence of the gluon polarization. Both results are consistent with previous measurements made at $\sqrt{s}= 200$ GeV in the overlapping kinematic region, $x > 0.05$, and show good agreement with predictions from recent next-to-leading order global analyses.

56 data tables

Fractions of the next-to-leading-order cross section for inclusive jet production arising from quark-quark, quark-gluon and gluon-gluon scattering in pp collisions (200GeV)

Fractions of the next-to-leading-order cross section for inclusive jet production arising from quark-quark, quark-gluon and gluon-gluon scattering in pp collisions (500GeV)

The upper panel shows the jet yield vs detector jet pT in data and simulation for each of the three trigger categories. The lower three panels show the relative differences between data and simulation (JP0)

More…

Elliptic flow of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014902, 2013.
Inspire Record 1210464 DOI 10.17182/hepdata.102408

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.

342 data tables

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

More…

Version 2
Energy and system-size dependence of two- and four-particle $v_2$ measurements in heavy-ion collisions at RHIC and their implications on flow fluctuations and nonflow

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 86 (2012) 014904, 2012.
Inspire Record 955160 DOI 10.17182/hepdata.101341

We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity.

28 data tables

The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.

The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.

The same as the left but for Cu+Cu collisions. The systematic errors are shown as thin lines with wide caps at the ends and statistical errors are shown as thick lines with small caps at the end. Statistical and systematic errors are very small.

More…

Charge-dependent pair correlations relative to a third particle in $p$+Au and $d$+Au collisions at RHIC

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Lett.B 798 (2019) 134975, 2019.
Inspire Record 1738942 DOI 10.17182/hepdata.105911

Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.

10 data tables

The $\gamma_{OS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{SS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{OS}$ correlators in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

More…

Coherent diffractive photoproduction of $\rho^{0}$ mesons on gold nuclei at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 96 (2017) 054904, 2017.
Inspire Record 1515028 DOI 10.17182/hepdata.101354

The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.

13 data tables

The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.

The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.

The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).

More…

Observation of excess J/$\psi$ yield at very low transverse momenta in Au+Au collisions at $\sqrt{s_{\rm{NN}}} =$ 200 GeV and U+U collisions at $\sqrt{s_{\rm{NN}}} =$ 193 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.Lett. 123 (2019) 132302, 2019.
Inspire Record 1731573 DOI 10.17182/hepdata.91138

We report on the first measurements of J/$\psi$ production at very low transverse momentum ($p_{T} <$ 0.2 GeV/c) in hadronic Au+Au collisions at $\sqrt{s_{\rm{NN}}} =$ 200 GeV and U+U collisions at $\sqrt{s_{\rm{NN}}} =$ 193 GeV. Remarkably, the inferred nuclear modification factor of J/$\psi$ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for $p_{T} <$ 0.05 GeV/c in the 60-80$\%$ collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the $dN/dt$ distribution of J/$\psi$ for the very low $p_{T}$ range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/$\psi$ yield observed at extremely low $p_{T}$ originates from coherent photon-nucleus interactions. In particular, coherently produced J/$\psi$'s in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.

8 data tables

'$J/\Psi$ invariant yields for Au+Au collisions 200 GeV as a function of $p_T$'

'$J/\Psi$ invariant yields for U+U collisions 193 GeV as a function of $p_T$'

'$J/\Psi$ $R_{AA}$ for Au+Au collisions 200 GeV as a function of $p_T$'

More…

Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 092301, 2014.
Inspire Record 1280557 DOI 10.17182/hepdata.105915

We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

45 data tables

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 7.7 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 11.5 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

The efficiency and centrality bin width corrected mean (M) of the net-charge multiplicity distributions as a function of number of participating nucleons $N_{part}$ for Au+Au collisions at 19.6 GeV. The dotted lines represent calculations from the central limit theorem. The error bars are statisticaland systematic errors.

More…

Precise measurement of the mass difference and the binding energy of hypertriton and antihypertriton

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Nature Phys. 16 (2020) 409-412, 2020.
Inspire Record 1731117 DOI 10.17182/hepdata.105279

According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a $\Lambda$ hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the $\Lambda$ hyperon binding energy $B_{\Lambda}$ for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry.

7 data tables

Measurements of relative mass-to-charge ratio differences between nuclei and antinuclei (d and antid)

Measurements of relative mass-to-charge ratio differences between nuclei and antinuclei (He and antiHe)

Measurements of relative mass-to-charge ratio differences between nuclei and antinuclei (hypertriton and antihypertriton)

More…

Energy dependence of $J/\psi$ production in Au+Au collisions at $\sqrt{s_{NN}} =$ 39, 62.4 and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 771 (2017) 13-20, 2017.
Inspire Record 1478040 DOI 10.17182/hepdata.104506

The inclusive $J/\psi$ transverse momentum ($p_{T}$) spectra and nuclear modification factors are reported at midrapidity ($|y|<1.0$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of $J/\psi$ production, with respect to {\color{black}the production in $p+p$ scaled by the number of binary nucleon-nucleon collisions}, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct $J/\psi$ production due to the color screening effect and $J/\psi$ regeneration from recombination of uncorrelated charm-anticharm quark pairs.

6 data tables

J/psi invariant yields in Au+Au collisions = 39 GeV as a function of pT for different centralities.

J/psi invariant yields in Au+Au collisions = 62.4 GeV as a function of pT for different centralities.

J/psi invariant yields in Au+Au collisions = 200 GeV as a function of pT for different centralities.

More…

Measurement of elliptic flow of light nuclei at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 034908, 2016.
Inspire Record 1416992 DOI 10.17182/hepdata.104505

We present measurements of 2$^{nd}$ order azimuthal anisotropy ($v_{2}$) at mid-rapidity $(|y|<1.0)$ for light nuclei d, t, $^{3}$He (for $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and anti-nuclei $\bar{\rm d}$ ($\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, and 19.6 GeV) and $^{3}\bar{\rm He}$ ($\sqrt{s_{NN}}$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The $v_{2}$ for these light nuclei produced in heavy-ion collisions is compared with those for p and $\bar{\rm p}$. We observe mass ordering in nuclei $v_{2}(p_{T})$ at low transverse momenta ($p_{T}<2.0$ GeV/$c$). We also find a centrality dependence of $v_{2}$ for d and $\bar{\rm d}$. The magnitude of $v_{2}$ for t and $^{3}$He agree within statistical errors. Light-nuclei $v_{2}$ are compared with predictions from a blast wave model. Atomic mass number ($A$) scaling of light-nuclei $v_{2}(p_{T})$ seems to hold for $p_{T}/A < 1.5$ GeV/$c$. Results on light-nuclei $v_{2}$ from a transport-plus-coalescence model are consistent with the experimental measurements.

19 data tables

Mid-rapidity v2(pT) for d,anti-d,t,He,anti-He from minimum bias (0-80%) Au+Au collisions 200 GeV (d data points are also shown in Fig 5).

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 62.4 GeV.

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 39 GeV.

More…

Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.D 89 (2014) 012001, 2014.
Inspire Record 1253360 DOI 10.17182/hepdata.103061

The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < {\eta} < 2.0 in polarized proton-proton collisions at sqrt{s} = 200 GeV are presented. Neutral pions were detected using the endcap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p_T < 16 GeV/c and is found to be within the scale uncertainty of a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry, A_LL, is measured in the same pseudorapidity range. This quantity is sensitive to the gluonic contribution to the proton spin, {\Delta}g(x), at low Bjorken-x (down to x approx 0.01), where it is less constrained by measurements at central pseudorapidity. The measured A_LL is consistent with model predictions. The parity-violating asymmetry, A_L, is also measured and found to be consistent with zero. The transverse single-spin asymmetry, A_N, is measured within a previously unexplored kinematic range in Feynman-x and p_T. Such measurements may aid our understanding of the on-set and kinematic dependence of the large asymmetries observed at more forward pseudorapidity ({\eta} approx 3) and their underlying mechanisms. The A_N results presented are consistent with a twist-3 model prediction of a small asymmetry within the present kinematic range.

16 data tables

Distributions of x1 and x2 in two different bins of reconstructed $\pi^{0}$ pT for events at $\sqrt{s}$ = 200 GeV over 0.8 < $\eta$ < 2.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

Comparison of data to Monte Carlo for the distributions of two-photon invariant mass (left) and energy for the higher (center) and lower (right) energy photon.

More…

Studies of di-jets in Au+Au collisions using angular correlations with respect to back-to-back leading hadrons

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 87 (2013) 044903, 2013.
Inspire Record 1206352 DOI 10.17182/hepdata.103059

Jet-medium interactions are studied via a multi-hadron correlation technique (called "2+1"), where a pair of back-to-back hadron triggers with large transverse momentum is used as a proxy for a di-jet. This work extends the previous analysis for nearly-symmetric trigger pairs with the highest momentum threshold of trigger hadron of 5 GeV/$c$ with the new calorimeter-based triggers with energy thresholds of up to 10 GeV and above. The distributions of associated hadrons are studied in terms of correlation shapes and per-trigger yields on each trigger side. In contrast with di-hadron correlation results with single triggers, the associated hadron distributions for back-to-back triggers from central Au+Au data at $\sqrt{s_{NN}}$=200 GeV show no strong modifications compared to d+Au data at the same energy. An imbalance in the total transverse momentum between hadrons attributed to the near-side and away-side of jet-like peaks is observed. The relative imbalance in the Au+Au measurement with respect to d+Au reference is found to increase with the asymmetry of the trigger pair, consistent with expectation from medium-induced energy loss effects. In addition, this relative total transverse momentum imbalance is found to decrease for softer associated hadrons. Such evolution indicates the energy missing at higher associated momenta is converted into softer hadrons.

8 data tables

Projections of 2-D correlation functions on $\Delta \phi$ (a) (with $|\Delta \eta|$ < 1.0) and $\Delta \eta$ (b) (with $|\Delta \phi|$ < 0.7) for the hadrons associated with their respective triggers (T1 for near-side, T2 for away–side) are shown for d+Au (circles) and central 0-20% Au+Au (squares).

Projections of 2-D correlation functions on $\Delta \phi$ (a) (with $|\Delta \eta|$ < 1.0) and $\Delta \eta$ (b) (with $|\Delta \phi|$ < 0.7) for the hadrons associated with their respective triggers (T1 for near-side, T2 for away–side) are shown for d+Au (circles) and central 0-20% Au+Au (squares).

Projections of 2-D correlation functions on $\Delta \phi$ (a) (with $|\Delta \eta|$ < 1.0) and $\Delta \eta$ (b) (with $|\Delta \phi|$ < 0.7) for the hadrons associated with their respective triggers (T1 for near-side, T2 for away–side) are shown for d+Au (circles) and central 0-20% Au+Au (squares).

More…

System Size Dependence of Transverse Momentum Correlations at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 87 (2013) 064902, 2013.
Inspire Record 1216565 DOI 10.17182/hepdata.103060

We present a study of the average transverse momentum ($p_t$) fluctuations and $p_t$ correlations for charged particles produced in Cu+Cu collisions at midrapidity for $\sqrt{s_{NN}} =$ 62.4 and 200 GeV. These results are compared with those published for Au+Au collisions at the same energies, to explore the system size dependence. In addition to the collision energy and system size dependence, the $p_t$ correlation results have been studied as functions of the collision centralities, the ranges in $p_t$, the pseudorapidity $\eta$, and the azimuthal angle $\phi$. The square root of the measured $p_t$ correlations when scaled by mean $p_t$ is found to be independent of both colliding beam energy and system size studied. Transport-based model calculations are found to have a better quantitative agreement with the measurements compared to models which incorporate only jetlike correlations.

17 data tables

Event-by-event $\langle p_{t}\rangle$ distributions for data and mixed events in central Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 and 62.4 GeV.

Comparison of dynamical $\langle p_{t}\rangle$ fluctuations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV as a function of the number of participanting nucleons.

Comparison of dynamical $\langle p_{t}\rangle$ fluctuations in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV as a function of the number of participanting nucleons.

More…

Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 94 (2016) 014907, 2016.
Inspire Record 1419279 DOI 10.17182/hepdata.89453

The BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. The temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled $p+p$ collisions. This suppression, which increases as the collisions become more central is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. The ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.

138 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$, $m_{\mathrm{T}}-m_{0}$ versus $p_{\mathrm{T}}$ for $\mathrm{K}^{-}$ in $\mathrm{Cu}-\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Nuclear modification factor for charged pions and protons at forward rapidity in central Au + Au collisions at 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 650 (2007) 219-223, 2007.
Inspire Record 729167 DOI 10.17182/hepdata.89447

We present spectra of charged pions and protons in 0-10% central Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV at mid-rapidity ($y=0$) and forward pseudorapidity ($\eta=2.2$) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au+Au collisions at both $y=0$ and $\eta=2.2$ exhibit suppression for charged pions but not for (anti-)protons at intermediate $p_T$. The $\bar{p}/\pi^-$ ratios have been measured up to $p_T\sim 3$ GeV/$c$ at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate $p_T$ range are (anti-)protons at both mid-rapidity and $\eta = 2.2$.

17 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{-}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Rapidity dependence of the proton-to-pion ratio in Au+Au and p+p collisions at sqrt(s_NN) = 62.4 and 200 GeV

The BRAHMS collaboration Arsene, I.G. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 684 (2010) 22-27, 2010.
Inspire Record 834310 DOI 10.17182/hepdata.89450

The proton-to-pion ratios measured in the BRAHMS experiment for Au+Au and p+p collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV are presented as a function of transverse momentum and collision centrality at selected pseudorapidities in the range of 0 to 3.8. A strong pseudorapidity dependence of these ratios is observed. We also compare the magnitude and p_T-dependence of the p/pi ratios measured in Au+Au collisions at \rootsnn{200} and $\eta \approx 2.2$ with the same ratio measured at \rootsnn{62.4} and $\eta = 0$. The great similarity found between these ratios throughout the whole p_T range (up to 2.2 GeV/$c$) is consistent with particle ratios in A+A collisions being described with grand-canonical distributions characterized by the baryo-chemical potential \mibn. At the collision energy of 62.4 GeV, we have observed a unique point in pseudorapidity, $\eta = 3.2$, where the p/pi+ ratio is independent of the collision system size in a wide p_T-range of $0.3 \le p_{T} \le 1.8$ GeV/$c$.

29 data tables

$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

On the evolution of the nuclear modification factors with rapidity and centrality in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.Lett. 93 (2004) 242303, 2004.
Inspire Record 645789 DOI 10.17182/hepdata.89444

We report on a study of the transverse momentum dependence of nuclear modification factors $R_{dAu}$ for charged hadrons produced in deuteron + gold collisions at $\sqrt{s_{NN}=\unit[200]{GeV}$, as a function of collision centrality and of the pseudorapidity ($\eta = 0,1,2.2,3.2 $) of the produced hadrons. We find significant and systematic decrease of $R_{dAu}$ with increasing rapidity. The midrapidity enhancement and the forward rapidity suppression are more pronounced in central collisions relative to peripheral collisions. These results are relevant to the study of the possible onset of gluon saturation at RHIC energies.

9 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$,$\frac{h^{+}+h^{-}}{2}$ in $\mathrm{p}\mathrm{p}$,$\mathrm{d}-\mathrm{Au}$ at $\sqrt{s}=200\,\mathrm{Ge\!V}$ near $\eta=0$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\frac{h^{+}+h^{-}}{2}$,$\frac{h^{+}+h^{-}}{2}$ in $\mathrm{p}\mathrm{p}$,$\mathrm{d}-\mathrm{Au}$ at $\sqrt{s}=200\,\mathrm{Ge\!V}$ near $\eta=1$

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{h}^{-}$,$\mathrm{h}^{-}$ in $\mathrm{p}\mathrm{p}$,$\mathrm{d}-\mathrm{Au}$ at $\sqrt{s}=200\,\mathrm{Ge\!V}$ near $\eta=2.2$

More…

Single Spin Asymmetry $A_N$ in Polarized Proton-Proton Elastic Scattering at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 719 (2013) 62-69, 2013.
Inspire Record 1117881 DOI 10.17182/hepdata.102952

We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer squared $t$ range $0.003 \leqslant |t| \leqslant 0.035$ $\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

3 data tables

The asymmetry $\varepsilon(\varphi)/(P_B + P_Y)$ for various $t$-intervals.

The measured single spin asymmetry $A_N$ for five $-t$ intervals.

Fitted value of $r_5$.


Suppression of Upsilon Production in d+Au and Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 735 (2014) 127-137, 2014.
Inspire Record 1269346 DOI 10.17182/hepdata.102940

We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.

14 data tables

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, p+p.

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, d+Au.

(a) $B_{ee} \times d\sigma/dy$ vs. $y$ for p+p collisions and for d+Au collisions (scaled down by 103).

More…

Di-Jet Imbalance Measurements at $\sqrt{s_{NN}} = 200$ GeV at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 119 (2017) 062301, 2017.
Inspire Record 1486427 DOI 10.17182/hepdata.102941

We report the first di-jet transverse momentum asymmetry measurements from Au+Au and p+p collisions at RHIC. The two highest-energy back-to-back jets reconstructed from fragments with transverse momenta above 2 GeV/c display a significantly stronger momentum imbalance in heavy-ion collisions than in the p+p reference. When re-examined with correlated soft particles included, we observe that these di-jets then exhibit a unique new feature -- momentum balance is restored to that observed in p+p for a jet resolution parameter of R=0.4, while re-balancing is not attained with a smaller value of R=0.2.

11 data tables

Normalized AJ distributions for Au+Au HT data (filled symbols) and p+p HT $\oplus$ Au+Au MB (open symbols). The red circles points are for jets found using only constituents with $p^{Cut}_{T} > 2$ GeV/$c$ and the black squares for matched jets found using constituents with $p^{Cut}_{T} > 0.2$ GeV/$c$. In all cases $R = 0.4$.

$p_{T}^{Part}$ vs. $p_{T}^{Det}$ for Leading jets with $R = 0.4$.

$p_{T}^{Part}$ vs. $p_{T}^{Det}$ for Leading jets with $R = 0.2$.

More…

Measurement of $D^0$ azimuthal anisotropy at mid-rapidity in Au+Au collisions at \sNN = 200\,GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 118 (2017) 212301, 2017.
Inspire Record 1510298 DOI 10.17182/hepdata.101749

We report the first measurement of the elliptic anisotropy ($v_2$) of the charm meson $D^0$ at mid-rapidity ($|y|$\,$<$\,1) in Au+Au collisions at \sNN = 200\,GeV. The measurement was conducted by the STAR experiment at RHIC utilizing a new high-resolution silicon tracker. The measured $D^0$ $v_2$ in 0--80\% centrality Au+Au collisions can be described by a viscous hydrodynamic calculation for transverse momentum ($p_{\rm T}$) less than 4\,GeV/$c$. The $D^0$ $v_2$ as a function of transverse kinetic energy ($m_{\rm T} - m_0$, where $m_{\rm T} = \sqrt{p_{\rm T}^2 + m_0^2}$) is consistent with that of light mesons in 10--40\% centrality Au+Au collisions. These results suggest that charm quarks have achieved local thermal equilibrium with the medium created in such collisions. Several theoretical models, with the temperature--dependent, dimensionless charm spatial diffusion coefficient ($2{\pi}TD_s$) in the range of $\sim$2--12, are able to simultaneously reproduce our $D^0$ $v_2$ result and our previously published results for the $D^0$ nuclear modification factor.

2 data tables

Azimuthal anisotropy $v_2$ as a function of $p_{\rm T}$ for $D^0$ in 10%–40% centrality Au+Au collisions.

Azimuthal anisotropy $v_2$ as a function of $p_{\rm T}$ for $D^0$ in 0%–80% centrality Au+Au collisions.


Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 83 (2011) 061901, 2011.
Inspire Record 889553 DOI 10.17182/hepdata.102950

We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.

7 data tables

Projections of 2+1 correlation on $\Delta\phi$ for 200 GeV top 12% central-triggered and mid-central Au+Au and minimum bias d+Au data.

Projections of 2+1 correlation on $\Delta\eta$ for 200 GeV top 12% central-triggered and mid-central Au+Au and minimum bias d+Au data.

Transverse momentum distributions per trigger pair for the same- and away-side hadrons associated with di-jet triggers (|$\Delta\phi$| < 0.5, |$\Delta\eta$| < 0.5).

More…

Inclusive charged hadron elliptic flow in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 - 39 GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 86 (2012) 054908, 2012.
Inspire Record 1119620 DOI 10.17182/hepdata.102951

A systematic study is presented for centrality, transverse momentum ($p_T$) and pseudorapidity ($\eta$) dependence of the inclusive charged hadron elliptic flow ($v_2$) at midrapidity($|\eta| < 1.0$) in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants ($v_2{4}$), are presented in order to investigate non-flow correlations and $v_2$ fluctuations. We observe that the difference between $v_2{2}$ and $v_2{4}$ is smaller at the lower collision energies. Values of $v_2$, scaled by the initial coordinate space eccentricity, $v_{2}/\varepsilon$, as a function of $p_T$ are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider ($\sqrt{s_{NN}}$ = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV). The $v_2(p_T)$ values for fixed $p_T$ rise with increasing collision energy within the $p_T$ range studied ($< 2 {\rm GeV}/c$). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of $v_{2}(p_{T})$. We also compare the $v_2$ results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.

12 data tables

The event plane resolutions for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV as a function of collision centrality.

The comparison of $v_2$ as a function of $p_T$ between GF-cumulant and Q-cumulant methods in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV.

The $p_T$ (> 0.2 GeV/c) and $\eta$ ($∣\eta∣$ < 1) integrated $v_2$ as a function of collision centrality for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.

More…