Evidence for $CP$ violation and measurement of $CP$-violating parameters in B$^0_\mathrm{s}$ $\to$ J/$\psi\,\phi$(1020) decays in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-23-004, 2024.
Inspire Record 2863762 DOI 10.17182/hepdata.156384

A pioneering machine-learning-based flavor-tagging algorithm combining same-side and opposite-side tagging is used to obtain the equivalent of 27$\,$000 tagged B$^0_\mathrm{s}$$\to$ J/$\psi\, \phi$(1020) decays from pp collisions at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 96.5 fb$^{-1}$. A time- and flavor-dependent angular analysis of the $\mu^+\mu^-$K$^+$K$^-$ final state is used to measure parameters of the $\mathrm{B}^0_\mathrm{s}$-$\overline{\mathrm{B}}^0_\mathrm{s}$ system. The weak phase is measured to be $\phi_\mathrm{s}$ = $-$73 $\pm$ 23 (stat) $\pm$ 7 (syst) mrad, which, combined with a $\sqrt{s}$ = 8 TeV CMS result, gives $\phi_\mathrm{s}$ = $-$74 $\pm$ 23 mrad. This value differs from zero by 3.2 standard deviations, providing evidence for $CP$ violation in B$^0_\mathrm{s}$$\to$ J/$\psi\,\phi$(1020) decays. All measured physics parameters are found to agree with standard model predictions where available.

5 data tables

Measured values and uncertainties of the main parameters of interest, as obtained from the analysis to data at 13 TeV.

Values and uncertainties of the physics parameters obtained from the combination of the CMS 8 TeV and 13 TeV results using the BLUE method. The uncertainty includes both statistical and systematic sources.

Matrix of the correlations of the statistical uncertainties between pairs of physics parameters, as obtained from the analysis to data at 13 TeV.

More…

Search for nuclear modifications of B$^+$ meson production in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIN-22-001, 2024.
Inspire Record 2805671 DOI 10.17182/hepdata.152619

Nuclear medium effects on B$^+$ meson production are studied using the binary-collision scaled cross section ratio between events of different multiplicities from proton-lead collisions. Data, collected by the CMS experiment in 2016 at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV, corresponding to an integrated luminosity of 175 nb$^{-1}$, were used. The scaling factors in the ratio are determined using a novel approach based on the Z $\to$$\mu^+\mu^-$ cross sections measured in the same events. The scaled ratio for B$^+$ is consistent with unity for all event multiplicities, putting stringent constraints on nuclear modification for heavy flavor.

5 data tables

$\mathrm{B}^+$ differential cross section and FONLL calculations, scaled by the number of binary collisions, vs $p_{\mathrm{T}}$. Global uncertainty (not included in the plot) is 4.7%, which comprises of the uncertainties in the integrated luminosity measurement and the $\mathrm{B}^+$ meson branching fraction.

$\mathrm{B}^+$ differential cross section in $p_{\mathrm{T}}$ bins divided into classes of multiplicity. For better visibility, data points are scaled by a factor of 2 (blue), 4 (magenta), or 8 (red). Vertical bars represent total uncertainties.

The $R_{\mathrm{HL}}$ for $\mathrm{B}^+$ in $p_{\mathrm{T}}$ bins for the highest and lowest multiplicity classes. The error bars correspond to the statistical uncertainty, and the boxes represent the sum in quadrature of systematic uncertainties.

More…

Measurement of the inclusive cross sections for W and Z boson production in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-20-004, 2024.
Inspire Record 2816048 DOI 10.17182/hepdata.153468

Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at $\sqrt{s}$ = 5.02 and 13 TeV. Electron and muon decay modes ($ell$ = e or$\mu$) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 $\pm$ 6 pb$^{-1}$ at 5.02 TeV and 206 $\pm$ 5 pb$^{-1}$ at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV are $\sigma$(pp $\to$ W+X)$\mathcal{B}$(W $\to$$\ell\nu$) = 7300 $\pm$ 10 (stat) $\pm$ 60 (syst) $\pm$ 140 (lumi) pb, and $\sigma$(pp $\to$ Z+X)$\mathcal{B}$(Z $\to$$\ell^+\ell^-$) = 669 $\pm$ 2 (stat) $\pm$ 6 (syst) $\pm$ 13 (lumi) pb for the dilepton invariant mass in the range of 60-120 GeV. The corresponding results at 13 TeV are 20480 $\pm$ 10 (stat) $\pm$ 170 (syst) $\pm$ 470 (lumi) pb and 1952 $\pm$ 4 (stat) $\pm$ 18 (syst) $\pm$ 45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W$^+$ and W$^-$ production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.

25 data tables

Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

Distributions of $m_T$ in the $W^{+}$ signal selection for mu final states for the pp collisions at $\sqrt{s}=$ 5TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

Distributions of $m_T$ in the $W^{+}$ signal selection for e final states for the pp collisions at $\sqrt{s}=$ 13TeV after the maximum likelihood fit. The EW backgrounds include the contributions from DY, $W\to\tau\nu$, and diboson processes.

More…

Observation of $t\bar{t}$ production in the lepton+jets and dilepton channels in $p$+Pb collisions at $\sqrt{s_\mathrm{NN}}=8.16$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 11 (2024) 101, 2024.
Inspire Record 2784411 DOI 10.17182/hepdata.153893

This paper reports the observation of top-quark pair production in proton-lead collisions in the ATLAS experiment at the Large Hadron Collider. The measurement is performed using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_\mathrm{NN}}=8.16$ TeV in 2016. Events are categorised in two analysis channels, consisting of either events with exactly one lepton (electron or muon) and at least four jets, or events with two opposite-charge leptons and at least two jets. In both channels at least one $b$-tagged jet is also required. Top-quark pair production is observed with a significance over five standard deviations in each channel. The top-quark pair production cross-section is measured to be $\sigma_{t\bar{t}}= 58.1\pm 2.0\;\mathrm{(stat.)\;^{+4.8}_{-4.4} \;\mathrm{(syst.)}}\;\mathrm{nb}$, with a total uncertainty of 9%. In addition, the nuclear modification factor is measured to be $R_{p\mathrm{A}} = 1.090\pm0.039\;(\mathrm{stat.})\;^{+0.094}_{-0.087}\;(\mathrm{syst.})$. The measurements are found to be in good agreement with theory predictions involving nuclear parton distribution functions.

18 data tables

The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.

The figure shows the post-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $e$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.

The figure shows the pre-fit distribution of events as a function of $H_{\mathrm{T}}^{\ell,j} = \sum_{\ell,j} p_{T}^{\ell,j}$, scalar sum of $p_T$ for all jets and leptons in the $\ell+$jets channel, in proton-lead (p+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 8.16$ TeV, with an integrated luminosity of 165 nb$^{-1}$. The data correspond to the $1\ell 1b$ $\mu$+jets channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield, including top quark pair production ($t\bar{t}$), single top, $W$ boson production with $b$, $c$, and light quarks, $Z$ boson production with $b$, $c$, and light quarks, diboson, and fake lepton backgrounds.

More…

Stairway to discovery: a report on the CMS programme of cross section measurements from millibarns to femtobarns

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-23-004, 2024.
Inspire Record 2791238 DOI 10.17182/hepdata.152803

The Large Hadron Collider at CERN, delivering proton-proton collisions at much higher energies and far higher luminosities than previous machines, has enabled a comprehensive programme of measurements of the standard model (SM) processes by the CMS experiment. These unprecedented capabilities facilitate precise measurements of the properties of a wide array of processes, the most fundamental being cross sections. The discovery of the Higgs boson and the measurement of its mass became the keystone of the SM. Knowledge of the mass of the Higgs boson allows precision comparisons of the predictions of the SM with the corresponding measurements. These measurements span the range from one of the most copious SM processes, the total inelastic cross section for proton-proton interactions, to the rarest ones, such as Higgs boson pair production. They cover the production of Higgs bosons, top quarks, single and multibosons, and hadronic jets. Associated parameters, such as coupling constants, are also measured. These cross section measurements can be pictured as a descending stairway, on which the lowest steps represent the rarest processes allowed by the SM, some never seen before.

3 data tables

Cross sections of selected high-energy processes measured by the CMS experiment. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% CL upper limit on the process indicated by the solid line of the same colour.

Summary of production cross section measurements involving top quarks. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour.

Summary of measurements of jet cross sections and electroweak processes in association with jets. Measurements performed at different LHC pp collision energies are marked by unique symbols and the coloured bands indicate the combined statistical and systematic uncertainty of the measurement. Grey bands indicate the uncertainty of the corresponding SM theory predictions. Shaded hashed bars indicate the excluded cross section region for a production process with the measured 95% C.L. upper limit on the process indicated by the solid line of the same colour. Versions of these plots in pdf format with links to the publications can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-23-004/.


Energy-scaling behavior of intrinsic transverse momentum parameters in Drell-Yan simulation

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-GEN-22-001, 2024.
Inspire Record 2839223 DOI 10.17182/hepdata.154142

We present an analysis based on models of the intrinsic transverse momentum of partons in nucleons by studying the dilepton transverse momentum in Drell-Yan events. Using parameter tuning in event generators and existing data from fixed-target experiments, from the Tevatron, and from the LHC, our investigation spans three orders of magnitude in center-of-mass energy and two orders of magnitude in dilepton invariant mass. The results show an energy-scaling behavior of the intrinsic transverse momentum parameters, independent of the dilepton invariant mass at a given center-of-mass energy.

45 data tables

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP5 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP4 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

Tuned intrinsic kT parameters BeamRemnants:PrimordialkThard in Pythia with the underlying-event tune CP3 at nucleon-nucleon center-of-mass energy from 38.8 GeV to 13 TeV.

More…

Observation of double J/$\psi$ meson production in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 110 (2024) 092002, 2024.
Inspire Record 2804399 DOI 10.17182/hepdata.152618

The first observation of the concurrent production of two J/$\psi$ mesons in proton-nucleus collisions is presented. The analysis is based on a proton-lead (pPb) data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC and corresponding to an integrated luminosity of 174.6 nb$^{-1}$. The two J/$\psi$ mesons are reconstructed in their $\mu^+\mu^-$ decay channels with transverse momenta $p_\mathrm{T}$$\gt$ 6.5 GeV and rapidity $\lvert y \rvert$$\lt$ 2.4. Events where one of the J/$\psi$ mesons is reconstructed in the dielectron channel are also considered in the search. The pPb $\to$ J/$\psi$J/$\psi$ + X process is observed with a significance of 5.3 standard deviations. The measured inclusive fiducial cross section, using the four-muon channel alone, is $\sigma$(pPb $\to$ J/$\psi$J/$\psi$ + X) = 22.0 $\pm$ 8.9 (stat) $\pm$ 1.5 (syst) nb. A fit of the data to the expected rapidity separation for pairs of J/$\psi$ mesons produced in single (SPS) and double (DPS) parton scatterings yields $\sigma^{\mathrm{pPb} \to \mathrm{J}/\psi\mathrm{J}/\psi +\mathrm{X}}_\text{SPS}$ = 16.5 $\pm$ 10.8 (stat) $\pm$ 0.1 (syst) nb and $\sigma^{\mathrm{pPb} \to \mathrm{J}/\psi\mathrm{J}/\psi + \mathrm{X}}_\text{DPS}$ = 5.4 $\pm$ 6.2 (stat) $\pm$ 0.4 (syst) nb, respectively. This latter result can be transformed into a lower bound on the effective DPS cross section, closely related to the squared average interparton transverse separation in the collision, of $\sigma_\text{eff}$$\gt$ 1.0 mb at 95% confidence level.

3 data tables

$\mathrm{pPb}\to\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi\,\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi+X$

$\mathrm{pPb}\to\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi\,\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi+X$

$\mathrm{pPb}\to\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi\,\mathrm{J}\mspace{-2mu}/\mspace{-2mu}\psi+X$


Inclusive quarkonium production in pp collisions at $\sqrt{s} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 83 (2023) 61, 2023.
Inspire Record 1935680 DOI 10.17182/hepdata.154625

This article reports on the inclusive production cross section of several quarkonium states, $\mathrm{J}/\psi$, $\psi {\rm (2S)}$, $\Upsilon\rm(1S)$, $\Upsilon\rm(2S)$, and $\Upsilon\rm(3S)$, measured with the ALICE detector at the LHC, in pp collisions at $\sqrt{s} = 5.02$ TeV. The analysis is performed in the dimuon decay channel at forward rapidity ($2.5 < y < 4$). The integrated cross sections and transverse-momentum ($p_{\rm T}$) and rapidity ($y$) differential cross sections for $\mathrm{J}/\psi$, $\psi {\rm (2S)}$, $\Upsilon\rm(1S)$, and the $\psi {\rm (2S)}$-to-$\mathrm{J}/\psi$ cross section ratios are presented. The integrated cross sections, assuming unpolarized quarkonia, are: $\sigma_{\mathrm{J}/\psi}$($p_{\rm T}<20$ GeV/c) = 5.88 $\pm$ 0.03 $\pm$ 0.34 $\mu$b, $\sigma_{\psi {\rm (2S)}}$($p_{\rm T}<12$ GeV/c) = 0.87 $\pm$ 0.06 $\pm$ 0.10 $\mu$b, $\sigma_{\Upsilon\rm(1S)}$($p_{\rm T}<15$ GeV/c) = 45.5 $\pm$ 3.9 $\pm$ 3.5 nb, $\sigma_{\Upsilon\rm(2S)}$($p_{\rm T}<15$ GeV/c) = 22.4 $\pm$ 3.2 $\pm$ 2.7 nb, and $\sigma_{\Upsilon\rm(3S)}$($p_{\rm T}<15$ GeV/c) = 4.9 $\pm$ 2.2 $\pm$ 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. For the first time, the cross sections of the three $\Upsilon$ states, as well as the $\psi {\rm (2S)}$ one as a function of $p_{\rm T}$ and $y$, are measured at $\sqrt{s} = 5.02$ TeV at forward rapidity. These measurements also significantly extend the $\mathrm{J}/\psi$$p_{\rm T}$ reach and supersede previously published results. A comparison with ALICE measurements in pp collisions at $\sqrt{s} = 2.76$, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models.

32 data tables

Differential production cross sections of J/$\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of J/$\psi$ as a function of rapidity.

Rapidity Differential production cross sections of J/$\psi$ in the range 0.3 $\leq$ p$_{\rm T}$ < 2 GeV/c

More…

Measurement of the prompt $D^0$ nuclear modification factor in $p$Pb collisions at $\sqrt{s_\mathrm{NN}} = 8.16$ TeV

The LHCb collaboration Aaij, R. ; Charpentier, Philippe ; Abdelmotteleb, A.S.W. ; et al.
Phys.Rev.Lett. 131 (2023) 102301, 2023.
Inspire Record 2694685 DOI 10.17182/hepdata.153894

The production of prompt $D^0$ mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV}$ is measured by the LHCb experiment. The nuclear modification factor of prompt $D^0$ mesons is determined as a function of the transverse momentum $p_\mathrm{T}$, and rapidity in the nucleon-nucleon center-of-mass frame $y^*$. In the forward rapidity region, significantly suppressed production with respect to $pp$ collisions is measured, which provides significant constraints of nuclear parton distributions and hadron production down to the very low Bjorken-$x$ region of $\sim 10^{-5}$. In the backward rapidity region, a suppression with a significance of 2.0 - 3.8 standard deviations compared to nPDF expectations is found in the kinematic region of $p_\mathrm{T}>6~\mathrm{GeV}/c$ and $-3.25<y^*<-2.5$, corresponding to $x\sim 0.01$.

5 data tables

Double-differential cross-sections for prompt $D^0$ mesons in intervals of $p_\mathrm{T}$ and $y^\ast$ in forward rapidity regions.

Double-differential cross-sections for prompt $D^0$ mesons in intervals of $p_\mathrm{T}$ and $y^\ast$ in backward rapidity regions.

Nuclear modification factor $R_{p\mathrm{Pb}}$ for prompt $D^0$ mesons in intervals of $p_\mathrm{T}$ and $y^\ast$ for $p_\mathrm{T} < 10\,\mathrm{GeV}/c$ in forward rapidity regions.

More…

Measurement of $B^+$, $B^0$ and $\Lambda_b^0$ production in $p\mkern 1mu\mathrm{Pb}$ collisions at $\sqrt{s_\mathrm{NN}}=8.16\,{\rm TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Phys.Rev.D 99 (2019) 052011, 2019.
Inspire Record 1720413 DOI 10.17182/hepdata.153895

The production of $B^+$, $B^0$ and $\Lambda_b^0$ hadrons is studied in proton-lead collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_\mathrm{NN}}=8.16\,{\rm TeV}$ recorded with the LHCb detector at the LHC. The measurement uses a dataset corresponding to an integrated luminosity of $12.2\pm0.3\,\mathrm{nb}^{-1}$ for the case where the proton beam is projected into the LHCb detector (corresponding to measuring hadron production at positive rapidity) and $18.6\pm0.5\,\mathrm{nb}^{-1}$ for the lead beam projected into the LHCb detector (corresponding to measuring hadron production at negative rapidity). Nuclear effects are probed through double-differential cross-sections, forward-to-backward cross-section ratios and nuclear modification factors of the beauty hadrons. The double-differential cross-sections are measured as a function of the beauty-hadron transverse momentum and rapidity in the nucleon-nucleon centre-of-mass frame. Forward-to-backward cross-section ratios and nuclear modification factors indicate a significant nuclear suppression at positive rapidity. The ratio of $\Lambda_b^0$ over $B^0$ production cross-sections is reported and is consistent with the corresponding measurement in $pp$~collisions.

10 data tables

Differential cross-section of $B^+$ production in bins of $p_\mathrm{T}$ and $y$, $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_\mathrm{T}\,\mathrm{d}y}$ ($\mu\mathrm{b}/[\mathrm{GeV}/c]$).

Differential cross-section of $B^0$ production in bins of $p_\mathrm{T}$ and $y$, $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_\mathrm{T}\,\mathrm{d}y}$ ($\mu\mathrm{b}/[\mathrm{GeV}/c]$).

Differential cross-section of $\mathit{\Lambda}_b^0$ production in bins of $p_\mathrm{T}$ and $y$, $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_\mathrm{T}\,\mathrm{d}y}$ ($\mu\mathrm{b}/[\mathrm{GeV}/c]$).

More…