This paper presents a new $\tau$-lepton reconstruction and identification procedure at the ATLAS detector at the Large Hadron Collider, which leads to significantly improved performance in the case of physics processes where a highly boosted pair of $\tau$-leptons is produced and one $\tau$-lepton decays into a muon and two neutrinos ($\tau_{\mu}$), and the other decays into hadrons and one neutrino ($\tau_{had}$). By removing the muon information from the signals used for reconstruction and identification of the $\tau_{had}$ candidate in the boosted pair, the efficiency is raised to the level expected for an isolated $\tau_{had}$. The new procedure is validated by selecting a sample of highly boosted $Z\rightarrow\tau_{\mu}\tau_{had}$ candidates from the data sample of $140$${fb}^{-1}$ of proton-proton collisions at $13$ TeV recorded with the ATLAS detector. Good agreement is found between data and simulation predictions in both the $Z\rightarrow\tau_{\mu}\tau_{had}$ signal region and in a background validation region. The results presented in this paper demonstrate the effectiveness of the $\tau_{had}$ reconstruction with muon removal in enhancing the signal sensitivity of the boosted $\tau_{\mu}\tau_{had}$ channel at the ATLAS detector.
The distribution of the TauID jet RNN score for $\tau_\mathrm{had}^{\mu\mkern-10mu\backslash}$ in the SR. `$Z(\rightarrow\tau\tau)$+jets' represents the contributions from the signal process. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.
The distribution of the TauID jet RNN score for $\tau_\mathrm{had}^{\mu\mkern-10mu\backslash}$ in the VR. `$Z(\rightarrow\tau\tau)$+jets' represents the contributions from the signal process. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.
The distribution of the $p_\mathrm{T}{}_{\mu\mathrm{-had}}^\mathrm{col}$ in the SR. `$Z(\rightarrow\tau\tau)+\text{jets}$' represents the contributions from the signal process. `Diboson' indicates the contributions from $WW$, $WZ$, and $ZZ$ processes. `Top' represents the predicted contributions from the $t\bar{t}$, single-top-quark, and $tW$ processes. `Other' includes the contributions from the $Z(\rightarrow\ell\ell)$+jets, $W$+jets, and Higgs boson processes. The uncertainties shown include both statistical and systematic sources.
A search for nonresonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}={13}$ TeV collected with the ATLAS detector at the Large Hadron Collider, and targets both the gluon-gluon fusion and vector-boson fusion production modes. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for nonresonant Higgs boson pair production is determined to be 5.4 (8.1) times the Standard Model predicted cross-section at 95% confidence level. Constraints are placed on modifiers to the $HHH$ and $HHVV$ couplings. The observed (expected) $2\sigma$ constraints on the $HHH$ coupling modifier, $\kappa_\lambda$, are determined to be $[-3.5, 11.3]$ ($[-5.4, 11.4]$), while the corresponding constraints for the $HHVV$ coupling modifier, $\kappa_{2V}$, are $[-0.0, 2.1]$ ($[-0.1, 2.1]$). In addition, constraints on relevant coefficients are derived in the context of the Standard Model effective field theory and Higgs effective field theory, and upper limits on the $HH$ production cross-section are placed in seven Higgs effective field theory benchmark scenarios.
Distributions of the reconstructed m<sub>HH</sub> in data (shown by the black points), the estimated background (shown by the yellow histograms) in the VBF signal region with |Δη<sub>HH</sub>| < 1.5. The hatching shows the total uncertainty of the background estimate. The distribution of the expected background is obtained using the best-fit values of the nuisance parameters in the fit to the data with the background-only hypothesis. Distributions for three choices of couplings are shown: the SM, κ<sub>λ</sub>= 6, and κ<sub>2V</sub> = 0 (with all other couplings set to their SM values in the last two models), scaled so as to be visible on the plot. The lower panels show the ratio of the observed data yield to the predicted background in each bin. Events in the overflow bins are counted in the yields of the final bins. In the HEPData entry, the raw value per histogram bin is provided, while in the published paper the values in the histogram are scaled by the bin width.
Distributions of the reconstructed m<sub>HH</sub> in data (shown by the black points), the estimated background (shown by the yellow histograms) in the VBF signal region with |Δη<sub>HH</sub>| > 1.5. The hatching shows the total uncertainty of the background estimate. The distribution of the expected background is obtained using the best-fit values of the nuisance parameters in the fit to the data with the background-only hypothesis. Distributions for three choices of couplings are shown: the SM, κ<sub>λ</sub>= 6, and κ<sub>2V</sub> = 0 (with all other couplings set to their SM values in the last two models), scaled so as to be visible on the plot. The lower panels show the ratio of the observed data yield to the predicted background in each bin. Events in the overflow bins are counted in the yields of the final bins. In the HEPData entry, the raw value per histogram bin is provided, while in the published paper the values in the histogram are scaled by the bin width.
The observed 95% CL exclusion limits as a function of κ<sub>λ</sub> (obtained using the signal strength μ<sub>ggF+VBF</sub> as the POI) from the combined ggF and VBF signal regions, as shown by the solid black line. The value of κ<sub>2V</sub> is fixed to 1. The blue and yellow bands show respectively the 1σ and 2σ bands around the expected exclusion limits, which are shown by the dashed black line. The expected exclusion limits are obtained using a fit to the data with the background-only hypothesis. The dark red line shows the predicted combined ggF and VBF HH cross-section as a function of κ<sub>λ</sub>.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the event-wise average transverse momentum ($P([p_{\mathrm{T}}])$). Distinguishing between contributions from fluctuations in the size of the nuclear overlap area (geometrical component) and other sources at fixed size (intrinsic component) presents a challenge. Here, these two components are distinguished by measuring the mean, variance, and skewness of $P([p_{\mathrm{T}}])$ in $^{208}$Pb+$^{208}$Pb and $^{129}$Xe+$^{129}$Xe collisions at $\sqrt{s_{{\mathrm{NN}}}} = 5.02$ and 5.44 TeV, respectively, using the ATLAS detector at the LHC. All observables show distinct changes in behavior in ultra-central collisions, where the geometrical variations are suppressed as the overlap area reaches its maximum. These results demonstrate a new technique to disentangle geometrical and intrinsic fluctuations, enabling constraints on initial condition and properties of the quark-gluon plasma, such as the speed of sound.
Data from Figure 1, panel a, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Pb+Pb collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Data from Figure 1, panel b, $\left\langle[p_{T}]\right\rangle$ vs $N_{ch}$ for Xe+Xe collisions, 0.5 $ <p_{T}< $ 5 GeV/c, $|\eta|< $ 2.5
Top-quark pair production is observed in lead-lead (Pb+Pb) collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb$^{-1}$. Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross-section is $\sigma_{t\bar{t}} = 3.6\;^{+1.0}_{-0.9}\;\mathrm{(stat.)}\;^{+0.8}_{-0.5}\;\mathrm{(syst.)} ~\mathrm{\mu b}$, with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the pre-equilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early universe.
The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR1 (Signal Region 1 (SR\(_1\)):} Events with exactly one muon and one oppositely charged electron, a dilepton invariant mass \( m_{e\mu} \geq 30 \, \mathrm{GeV} \), at least two jets with \( p_T \geq 35 \, \mathrm{GeV} \), and a dilepton transverse momentum \( p_T^{e\mu} > 40 \, \mathrm{GeV} \). This region is expected to be signal-dominated) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.
The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR2 (Signal Region 2 (SR\(_2\)):} Events meeting the same criteria as SR\(_1\), but with a dilepton transverse momentum \( p_T^{e\mu} \leq 40 \, \mathrm{GeV} \). This region includes events with a lower \( p_T^{e\mu} \) and has a larger background contribution) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.
The impact of systematic uncertainties on the fitted signal-strength parameter $\hat{\mu}$ for the combined fit of all channels. Only the 10 most significant systematic uncertainties are shown and listed in decreasing order of their impact on $\mu$ on the $y$-axis. The empty (filled) blue/cyan boxes correspond to the pre-fit (post-fit) impact on $\mu$, referring to the upper $x$-axis. The impact of each systematic uncertainty, $\Delta \mu$, is calculated by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the corresponding nuisance parameter $\theta$ to its best-fit value $\hat{\theta}$ shifted by its pre-fit (post-fit) uncertainties $\hat{\theta} \pm \Delta \theta(\hat{\theta} \pm \Delta \hat{\theta})$. The black points, which refer to the lower $x$-axis, show the pulls of the fitted nuisance parameters, i.e., the deviations of the fitted parameters $\hat{\theta}$ from their nominal values $\theta_0$, normalized to their nominal uncertainties $\Delta \theta$. The black lines show the post-fit uncertainties of the nuisance parameters, relative to their nominal uncertainties, which are indicated by the dashed lines.
Measurements of inclusive and differential production cross-sections of a top-quark-top-antiquark pair in association with a $W$ boson ($t\bar{t}W$) are presented. They are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on $\sqrt{s}=13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive $t\bar{t}W$ production cross-section is measured to be $880 \pm 80$ fb, compared to a reference theoretical prediction of $745 \pm 50\,\textrm{(scale)} \pm 13\,\textrm{(2-loop approx.)} \pm 19\,\textrm{(PDF,} \alpha_{\textrm{S}})$ fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared with a variety of theoretical predictions, which generally agree well with the normalised differential cross-section results. Additionally, the relative charge asymmetry of $t\bar{t}W^{+}$ and $t\bar{t}W^{-}$ is measured inclusively to be ${A_{\mathrm{C}}^{\mathrm{rel}}} = 0.33 \pm 0.05$, in very good agreement with the theoretical prediction of $0.322 \pm 0.003\,\mathrm{(scale)} \pm 0.007\,\mathrm{(PDF)}$, as well as differentially.
All the entries of this HEP data record are listed.
Results of inclusive cross section measurement
Measurements of inclusive, differential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at $\sqrt{s}=13~$TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of $140~$fb$^{-1}$ and include measurements of dijet distributions in a region in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for the $Z~\to \nu\nu$ process is made. The measurements are generally well-described by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where the constraints derived from the measurement are comparable to those set by dedicated detector-level searches.
The measured $p_\text{T}^\text{miss}$ differential cross-sections in the $p_\text{T}^\text{miss}+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
The measured $p_\text{T}^\text{recoil}$ differential cross-sections in the $1\mu+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
The measured $p_\text{T}^\text{recoil}$ differential cross-sections in the $1e+\text{jets}$ region of the incluse jet phase space, compared with the SM predictions. The middle panels show the ratios of the predictions to the data, along with their uncertainties, while the lower panels show the relative contributions from different SM processes relative to the total MEPS@NLO prediction. Note that individually numbered PDF components ('dK_PDF_') in the uncertainty breakdown correspond to NNPDF Hessian eigenvectors. Uncertainty components labeled 'VV_dK' include Vjj processes.
In ultra-relativistic heavy ion collisions at the LHC, each nucleus acts a sources of high-energy real photons that can scatter off the opposing nucleus in ultra-peripheral photonuclear ($\gamma+A$) collisions. Hard scattering processes initiated by the photons in such collisions provide a novel method for probing nuclear parton distributions in a kinematic region not easily accessible to other measurements. ATLAS has measured production of dijet and multi-jet final states in ultra-peripheral Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV using a data set recorded in 2018 with an integrated luminosity of 1.72 $\text{nb}^{-1}$. Photonuclear final states are selected by requiring a rapidity gap in the photon direction; this selects events where one of the outgoing nuclei remains intact. Jets are reconstructed using the anti-$k_\text{t}$ algorithm with radius parameter, $R = 0.4$. Triple-differential cross-sections, unfolded for detector response, are measured and presented using two sets of kinematic variables. The first set consists of the total transverse momentum ($H_\text{T}$),rapidity, and mass of the jet system. The second set uses $H_\text{T}$ and particle-level nuclear and photon parton momentum fractions, $x_\text{A}$ and $z_{\gamma}$, respectively. The results are compared with leading-order (LO) perturbative QCD calculations of photonuclear jet production cross-sections, where all LO predictions using existing fits fall below the data in the shadowing region. More detailed theoretical comparisons will allow these results to strongly constrain nuclear parton distributions, and these data provide results from the LHC directly comparable to early physics results at the planned Electron-Ion Collider.
The fraction of photonuclear jet events passing the fiducial requirements in which the photon-emitting nucleus does not break up as a function of \zg. The systematic uncertainties are not symmetrized, and correlations in uncertainties are neglected for both the total systematic uncertainty and statistical uncertainty.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $y_\text{jets}$, and $m_\text{jets}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
Fully unfolded triple-differential cross-sections as a function of $H_\text{T}$, $x_\text{A}$, and $z_{\gamma}$. Systematic uncertainties are decomposed into symmetrized nuisance parameters, where parameters labelled "Corr" are fully correlated bin-to-bin, while parameters labelled "Uncorr" should be treated as un-correlated bin-to-bin. These cross-sections are not corrected for the effects of additional nuclear break-up. Values for the total fiducial cross-section in each bin are reported with full statistical and systematic uncertainties. Fractions of the total bin volume occupied by the fiducial region, fractions of the total cross-section in that bin satisfying fiducial requirements, and mean bin values for each axis variable are derived from Pythia 8 Monte Carlo and reported as well. For more details on these quantities, see Appendix B.
This Letter presents a constraint on the total width of the Higgs boson ($\Gamma_H$) using a combined measurement of on-shell Higgs boson production and the production of four top quarks, which involves contributions from off-shell Higgs boson-mediated processes. This method relies on the assumption that the tree-level Higgs-top Yukawa coupling strength is the same for on-shell and off-shell Higgs boson production processes, thereby avoiding any assumptions about the relationship between on-shell and off-shell gluon fusion Higgs production rates, which were central to previous measurements. The result is based on up to 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected with the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on $\Gamma_H$ is 450 MeV (75 MeV). Additionally, considering the constraint on the Higgs-top Yukawa coupling from loop-induced Higgs boson production and decay processes further yields an observed (expected) upper limit of 160 MeV (55 MeV).
The observed profile likelihood ratio, $-2ln \Lambda$, as a function of $\Gamma_H$.
The observed profile likelihood ratio, $-2ln \Lambda$, as a function of $\Gamma_H/\Gamma_H^{SM}$ and $\kappa_t$.
The observed profile likelihood ratio, $-2ln \Lambda$, as a function of $\Gamma_H/\Gamma_H^{SM}$.
A search for charged-lepton-flavour violating $\mu\tau qt$ ($q=u,c$) interactions is presented, considering both top-quark production and decay. The data analysed correspond to 140 $\textrm{fb}^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}= $13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The analysis targets events containing two muons with the same electric charge, a hadronically decaying $\tau$-lepton and at least one jet, with exactly one $b$-tagged jet, produced by a $\mu\tau qt$ interaction. Agreement with the Standard Model expectation within $1.6\sigma$ is observed, and limits are set at the 95% CL on the charged-lepton-flavour violation branching ratio of $\mathcal{B}(t \to \mu\tau q) < 8.7 \times 10^{-7}$. An Effective Field Theory interpretation is performed yielding 95% CL limits on Wilson coefficients, dependent on the flavour of the associated light quark and the Lorentz structure of the coupling. These range from $|c_{\mathsf{lequ}}^{3(2313)}| / \Lambda^{2} < 0.10\textrm{ TeV}^{-2}$ for $\mu\tau ut$ to $|c_{\mathsf{ lequ}}^{1(2323)}| / \Lambda^{2} < 1.8\textrm{ TeV}^{-2}$ for $\mu\tau ct$. An additional interpretation is performed for scalar leptoquark production inducing charged lepton flavour violation, with fixed inter-generational couplings. Upper limits on leptoquark coupling strengths are set at the 95% CL, ranging from $\lambda^{\textrm{LQ}} = $1.3 to $\lambda^{\textrm{LQ}} = $3.7 for leptoquark masses between 0.5 and 2.0 TeV.
Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.
Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with post-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively.
Observed event yields in $\textrm{SR}$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.
The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.
Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.