The azimuthal correlation between the leading jet and the scattered lepton in deep inelastic scattering at HERA

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
DESY-24-070, 2024.
Inspire Record 2794054 DOI 10.17182/hepdata.153487

The azimuthal correlation angle, $\Delta\phi$, between the scattered lepton and the leading jet in deep inelastic $e^{\pm}p$ scattering at HERA has been studied using data collected with the ZEUS detector at a centre-of-mass energy of $\sqrt{s} = 318 \;\mathrm{GeV}$, corresponding to an integrated luminosity of $326 \;\mathrm{pb}^{-1}$. A measurement of jet cross sections in the laboratory frame was made in a fiducial region corresponding to photon virtuality $10 \;\mathrm{GeV}^2 < Q^2 < 350 \;\mathrm{GeV}^2$, inelasticity $0.04 < y < 0.7$, outgoing lepton energy $E_e > 10 \;\mathrm{GeV}$, lepton polar angle $140^\circ < \theta_e < 180^\circ$, jet transverse momentum $2.5 \;\mathrm{GeV} < p_\mathrm{T,jet} < 30 \;\mathrm{GeV}$, and jet pseudorapidity $-1.5 < \eta_\mathrm{jet} < 1.8$. Jets were reconstructed using the $k_\mathrm{T}$ algorithm with the radius parameter $R = 1$. The leading jet in an event is defined as the jet that carries the highest $p_\mathrm{T,jet}$. Differential cross sections, $d\sigma/d\Delta\phi$, were measured as a function of the azimuthal correlation angle in various ranges of leading-jet transverse momentum, photon virtuality and jet multiplicity. Perturbative calculations at $\mathcal{O}(\alpha_{s}^2)$ accuracy successfully describe the data within the fiducial region, although a lower level of agreement is observed near $\Delta\phi \rightarrow \pi$ for events with high jet multiplicity, due to limitations of the perturbative approach in describing soft phenomena in QCD. The data are equally well described by Monte Carlo predictions that supplement leading-order matrix elements with parton showering.

45 data tables

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Inclusive measurement of the differential cross sections, $d\sigma/d\Delta\phi$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. The effect of initial- and final-state radiation has been corrected in data, based on a simulation study performed in the RAPGAP framework. The quantities $\delta_\mathrm{stat}$ and $\delta_\mathrm{syst}$ represent the statistical and systematic uncertainties relative to the central value, respectively. The uncertainty in the luminosity measurement ($1.9\%$) is not included in these values. The quantities $\delta(\mathcal{O}(\alpha_{s}^{k}))$ represent the combined uncertainty of the scale dependence in the calculation and the model dependence in the hadronisation correction in the $\mathcal{O}(\alpha_{s}^{k})$ calculations.

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 1$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.

<b>Note: in the paper, uncertainties are given in relative terms. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Differential cross sections, $d\sigma/d\Delta\phi$, in the $p_{T,jet}^{lead}$ region of $2.5 \;\mathrm{GeV} < p_{T,jet}^{lead} < 7 \;\mathrm{GeV}$ for $N_{jet} \geq 2$, as obtained from the data, ARIADNE MC simulations, and perturbative calculations at $\mathcal{O}(\alpha_{s})$ and $\mathcal{O}(\alpha_{s}^{2})$ accuracy. Other details are as in the caption to Table 1.

More…

Version 2
Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 83 (2023) 1082, 2023.
Inspire Record 2694205 DOI 10.17182/hepdata.145637

A new measurement of inclusive-jet cross sections in the Breit frame in neutral current deep inelastic scattering using the ZEUS detector at the HERA collider is presented. The data were taken in the years 2004 to 2007 at a centre-of-mass energy of $318\,\text{GeV}$ and correspond to an integrated luminosity of $347\,\text{pb}^{-1}$. Massless jets, reconstructed using the $k_t$-algorithm in the Breit reference frame, have been measured as a function of the squared momentum transfer, $Q^2$, and the transverse momentum of the jets in the Breit frame, $p_{\perp,\text{Breit}}$. The measured jet cross sections are compared to previous measurements and to perturbative QCD predictions. The measurement has been used in a next-to-next-to-leading-order QCD analysis to perform a simultaneous determination of parton distribution functions of the proton and the strong coupling, resulting in a value of $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017~\text{(experimental/fit)}$${}^{+0.0006}_{-0.0007}~\text{(model/parameterisation)}$${}^{+0.0006}_{-0.0004}~\text{(scale)}$, whose accuracy is improved compared to similar measurements. In addition, the running of the strong coupling is demonstrated using data obtained at different scales.

7 data tables

<b>Note: in the paper, uncertainties are given in percent. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Double-differential inclusive-jet cross sections, $\sigma$. Also listed are the unfolding uncertainty $\delta_\text{unf}$, the sum of the uncorrelated systematic uncertainties $\delta_\text{uncor}$ and the correlated systematic uncertainties associated with the jet-energy scale $\delta_\text{JES}$, the MC model $\delta_\text{model}$, the relative normalisation of the background from unmatched detector-level jets $\delta_\text{fake}$, the relative normalisation of the background from low-$Q^2$ DIS events $\delta_\text{Low-$Q^2$}$, the $(E-p_\text{Z})$-cut boundaries $\delta_{E-p_\text{Z}}$, the track-matching-efficiency correction $\delta_\text{TME}$. Uncertainties for which a single number is listed should be taken as symmetric in the other direction. Not listed explicitly is the luminosity uncertainty of $1.9\%$, which is fully correlated across all points. The last four columns show the QED Born-level correction $c_\text{QED}$ that has been applied to the data as well as the $Z$, $c_Z$, and hadronisation correction $c_\text{Had}$ and associated uncertainty that need to be applied to the theory predictions.

<b>Note: in the paper, uncertainties are given in percent. The HEPData table contains absolute numbers. The original data file, containing relative uncertainties as in the paper, is available via the 'Resources' button above.</b> Breakdown of the uncorrelated uncertainty $\delta_\text{uncor}$ from Table 1. Shown are the uncertainties associated with the reweighting of the MC models ($\delta_\text{rew.}$), the electron-energy scale ($\delta_\text{EES}$), the electron-finding algorithm ($\delta_\text{EM}$), the electron calibration ($\delta_\text{EL}$), the variation of the $p_{T,\text{lab}}$ cut of the jets ($\delta_{p_T}$), the variation of the electron-track momentum-cut boundaries ($\delta_\text{trk.}$), the variation of the $p_T/\sqrt{E_T}$-cut boundaries ($\delta_\text{bal.}$), the variation of the $Z_\text{vertex}$-cut boundaries ($\delta_\text{vtx.}$), the variation of the $R_\text{RCAL}$-cut boundaries ($\delta_\text{rad.}$), the variation of the electron-track distance-cut boundaries ($\delta_\text{DCA}$), the relative normalisation of the background from photoproduction events ($\delta_\text{PHP}$), the polarisation correction ($\delta_\text{pol.}$), the FLT track-veto-efficiency correction ($\delta_\text{FLT}$) and the correction to QED Born-level ($\delta_\text{QED}$). For the asymmetric uncertainties, the upper number corresponds to the upward variation of the corresponding parameter and the lower number corresponds to the downward variation.

Correlation matrix of the unfolding uncertainty within the inclusive-jet cross-section measurement. Correlations are given in percent.

More…

Version 2
Multi-jet cross sections in charged current e+-p scattering at HERA

The ZEUS collaboration Chekanov, Sergei ; Derrick, M. ; Magill, S. ; et al.
Phys.Rev.D 78 (2008) 032004, 2008.
Inspire Record 780108 DOI 10.17182/hepdata.50599

Jet cross sections were measured in charged current deep inelastic e+-p scattering at high boson virtualities Q^2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb^-1. Differential cross sections are presented for inclusive-jet production as functions of Q^2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e+-p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits.

23 data tables

Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.

Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.

Differential polarized inclusive jet cross sections as a function of jet transverse energy.

More…

Azimuthal correlations in photoproduction and deep inelastic $\boldsymbol{ep}$ scattering at HERA

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
JHEP 12 (2021) 102, 2021.
Inspire Record 1869927 DOI 10.17182/hepdata.110989

Collective behaviour of final-state hadrons, and multiparton interactions are studied in high-multiplicity $ep$ scattering at a centre-of-mass energy $\sqrt{s}=318$ GeV with the ZEUS detector at HERA. Two- and four-particle azimuthal correlations, as well as multiplicity, transverse momentum, and pseudorapidity distributions for charged-particle multiplicities $N_{\textrm ch} \geq 20$ are measured. The dependence of two-particle correlations on the virtuality of the exchanged photon shows a clear transition from photoproduction to neutral current deep inelastic scattering. For the multiplicities studied, neither the measurements in photoproduction processes nor those in neutral current deep inelastic scattering indicate significant collective behaviour of the kind observed in high-multiplicity hadronic collisions at RHIC and the LHC. Comparisons of PYTHIA predictions with the measurements in photoproduction strongly indicate the presence of multiparton interactions from hadronic fluctuations of the exchanged photon.

17 data tables

Two-particle correlations $c_{1}\{2\}$ versus $Q^2$. Photoproduction data are shown at $Q^2$ = 0 GeV$^2$, while NC DIS is for $Q^2$ > 5 GeV$^2$.

Two-particle correlations $c_{1}\{2\}$ versus $Q^2$ with a rapidity separation: $\Delta \eta > 2$. Photoproduction data are shown at $Q^2$ = 0 GeV$^2$, while NC DIS is for $Q^2$ > 5 GeV$^2$.

Two-particle correlations $c_{1}\{2\}$ versus $Q^2$ with a high-$p_{\textrm{T}}$ constraint: $p_{\textrm{T}}$ > 0.5 GeV. Photoproduction data are shown at $Q^2$ = 0 GeV$^2$, while NC DIS is for $Q^2$ > 5 GeV$^2$.

More…

Version 2
Scaled momentum distributions for K0s and Lambda/bar Lambda in DIS at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 03 (2012) 020, 2012.
Inspire Record 945935 DOI 10.17182/hepdata.62425

Scaled momentum distributions for the strange hadrons K0s and Lambda/bar Lambda were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb-1. The evolution of these distributions with the photon virtuality, Q2, was studied in the kinematic region 10<Q2<40000 GeV2 and 0.001<x<0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e+e- data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e+e-, ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K0s and Lambda/bar Lambda strange hadrons.

12 data tables

The measured scaled momentum distributions for K0S production as a function of Q^2 in six XP regions.

The measured scaled momentum distributions for K0S production as a function of Q^2 in three XP regions.

The measured scaled momentum distributions for K0S production as a function of XP in five Q**2 regions.

More…

Version 2
Neutral strange particle production in deep inelastic scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 68 (1995) 29-42, 1995.
Inspire Record 395196 DOI 10.17182/hepdata.44998

This paper presents measurements of \k\ and \lam\ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range $ 10 < Q~{2} < 640 $ GeV$~2$, $0.0003 < x < 0.01$, and $y > 0.04$. Average multiplicities for \k\ and \lam\ production are determined for transverse momenta \ \ptr\ $> 0.5 $ GeV and pseudorapidities $\left| \eta \right| < 1.3$. The multiplicities favour a stronger strange to light quark suppression in the fragmentation chain than found in $e~+ e~-$ experiments. The production properties of \k's in events with and without a large rapidity gap with respect to the proton direction are compared. The ratio of neutral \k's to charged particles per event in the measured kinematic range is, within the present statistics, the same in both samples.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Production of exclusive dijets in diffractive deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 76 (2016) 16, 2016.
Inspire Record 1372086 DOI 10.17182/hepdata.73738

Production of exclusive dijets in diffractive deep inelastic $e^\pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $\gamma^*-p$ centre-of-mass energies in the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $\beta$ and $\phi$, where $\beta=x/x_{\rm I\!P}$, $x$ is the Bjorken variable and $x_{\rm I\!P}$ is the proton fractional longitudinal momentum loss. The angle $\phi$ is defined by the $\gamma^*-$dijet plane and the $\gamma^*-e^\pm$ plane in the rest frame of the diffractive final state. The $\phi$ cross section is measured in bins of $\beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

3 data tables

Differential cross-section $d\sigma/d\beta$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV^2$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation also given in the table.

Differential cross-section $d\sigma/d\phi$ in the kinematic range: $Q^2 > 25 GeV^2$, $90 < W < 250 GeV$, $x_{\rm I\!P} < 0.01$, $M_X > 5 GeV$ and $p_{T,jet} > 2 GeV$. The contribution from proton dissociation was subtracted. The uncertainty of the subtraction determines the uncertainty of the normalisation given in the table.

Results of the fit to the cross-section $d\sigma/d\phi$ in bins of $\beta$. The fitted function is proportional to $(1+A \rm{cos}2\phi)$. The uncertainty includes both statistical and systematical contributions (see text of paper).


Combination of Differential D^{*\pm} Cross-Section Measurements in Deep-Inelastic ep Scattering at HERA

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
JHEP 09 (2015) 149, 2015.
Inspire Record 1353667 DOI 10.17182/hepdata.73328

H1 and ZEUS have published single-differential cross sections for inclusive D^{*\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 < y < 0.7 and the D^{*\pm} meson's transverse momentum pT (D^*) > 1.5 GeV and pseudorapidity |eta(D^*)| < 1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d2s /dQ2dy are combined with earlier D^{*\pm} data, extending the kinematic range down to Q2 > 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.

6 data tables

The combined differential $D^{*\pm}$-production cross section as a function of $p_T(D^{*})$, with its uncorrelated and correlated uncertainties.

The combined differential $D^{*\pm}$-production cross section as a function of $\eta(D^{*})$, with its uncorrelated and correlated uncertainties.

The combined differential $D^{*\pm}$-production cross section as a function of $z(D^{*})$, with its uncorrelated and correlated uncertainties.

More…

Exclusive electroproduction of J/psi mesons at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 695 (2004) 3-37, 2004.
Inspire Record 647777 DOI 10.17182/hepdata.46277

The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been studied with the ZEUS detector at HERA for virtualities of the exchanged photon in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton centre-of-mass energy was in the range 30<W<220 GeV and the squared four-momentum transfer at the proton vertex |t|<1.The cross sections and decay angular distributions are presented as functions of Q^2, W and t. The effective parameters of the Pomeron trajectory are in agreement with those found in J/psi photoproduction. The spin-density matrix elements, calculated from the decay angular distributions, are consistent with the hypothesis of s-channel helicity conservation. The ratio of the longitudinal to transverse cross sections, sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed. The results are in agreement with perturbative QCD calculations and exhibit a strong sensitivity to the gluon distribution in the proton.

20 data tables

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 0.15 to 0.18 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 2 to 5 GeV**2.

Cross sections for exclusive J/PSI production as a function of W in the Q**2 region 5 to 10 GeV**2.

More…

Measurement of isolated photons accompanied by jets in deep inelastic ep scattering

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett.B 715 (2012) 88-97, 2012.
Inspire Record 1117891 DOI 10.17182/hepdata.60574

The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb^{-1}. Measurements were made for exchanged photon virtualities, Q^2, in the range 10 to 350 GeV^2. The photons were measured in the transverse-energy and pseudorapidity ranges 4 < ET^gamma < 15 GeV and -0.7 < eta^gamma < 0.9, and the jets were measured in the transverse-energy and pseudorapidity ranges 2.5 < ET^jet <35 GeV and -1.5 < eta^jet < 1.8. Differential cross sections are presented as functions of these quantities. Perturbative QCD predictions give a reasonable description of the shape of the measured cross sections over most of the kinematic range, but the absolute normalisation is typically in disagreement by 20-30%.

6 data tables

The measured differential cross section as a function of Q**2.

The measured differential cross section as a function of X.

The measured differential cross section as a function of the transverse energy of the photon.

More…