Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 114 (2015) 252302, 2015.
Inspire Record 1358666 DOI 10.17182/hepdata.72237

We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

10 data tables

The distribution of observed charge asymmetry from STAR data.

Pion $v_2${2} as a function of observed charge asymmetry.

$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.

More…

Deep inelastic scattering with leading protons or large rapidity gaps at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 816 (2009) 1-61, 2009.
Inspire Record 804915 DOI 10.17182/hepdata.52860

The dissociation of virtual photons, $\gamma^{\star} p \to X p$, in events with a large rapidity gap between $X$ and the outgoing proton, as well as in events in which the leading proton was directly measured, has been studied with the ZEUS detector at HERA. The data cover photon virtualities $Q^2>2$ GeV$^2$ and $\gamma^{\star} p$ centre-of-mass energies $40<W<240$ GeV, with $M_X>2$ GeV, where $M_X$ is the mass of the hadronic final state, $X$. Leading protons were detected in the ZEUS leading proton spectrometer. The cross section is presented as a function of $t$, the squared four-momentum transfer at the proton vertex and $\Phi$, the azimuthal angle between the positron scattering plane and the proton scattering plane. It is also shown as a function of $Q^2$ and $\xpom$, the fraction of the proton's momentum carried by the diffractive exchange, as well as $\beta$, the Bjorken variable defined with respect to the diffractive exchange.

48 data tables

The differential cross section DSIG/DT for the LRG and the LPS data samples.

The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).

The fitted exponential slope of the T distribution as a function of X(NAME=POMERON).

More…

Beam-spin asymmetries in the azimuthal distribution of pion electroproduction.

The HERMES collaboration Airapetian, A. ; Akopov, Z. ; Amarian, M. ; et al.
Phys.Lett.B 648 (2007) 164-170, 2007.
Inspire Record 735612 DOI 10.17182/hepdata.41783

A measurement of the beam-spin asymmetry in the azimuthal distribution of pions produced in semi-inclusive deep-inelastic scattering off protons is presented. The measurement was performed using the {HERMES} spectrometer with a hydrogen gas target and the longitudinally polarized 27.6 GeV positron beam of HERA. The sinusoidal amplitude of the dependence of the asymmetry on the angle $\phi$ of the hadron production plane around the virtual photon direction relative to the lepton scattering plane was measured for $\pi^+,\pi^-$ and $\pi^0$ mesons. The dependence of this amplitude on the Bjorken scaling variable and on the pion fractional energy and transverse momentum is presented. The results are compared to theoretical model calculations.

6 data tables

Beam SSA as a function of Z, X, hadronic PT and Q**2.

Beam SSA as a function of Z, X, hadronic PT and Q**2.

Beam SSA as a function of Z, X, hadronic PT and Q**2.

More…

Precise determination of the spin structure function g(1) of the proton, deuteron and neutron.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Phys.Rev.D 75 (2007) 012007, 2007.
Inspire Record 726689 DOI 10.17182/hepdata.11211

Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.

23 data tables

Integrals of G1 for P, DEUT and N targets.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2.

Integrals of G1 for the Non-Singlet contributions.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

Integrals of G1 over different X ranges for P target at various Q*2 values. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.

More…

Inclusive hadron photoproduction from longitudinally polarized protons and deuterons.

The E155 collaboration Anthony, P.L. ; Arnold, R.G. ; Averett, T. ; et al.
Phys.Lett.B 458 (1999) 536-544, 1999.
Inspire Record 495554 DOI 10.17182/hepdata.28074

We report measurements of the asymmetry A_parallel for inclusive hadron production on longitudinally polarized proton and deuteron targets by circularly polarized photons. The photons were produced via internal and external bremsstrahlung from an electron beam of 48.35 GeV. Asymmetries for both positive and negative signed hadrons, and a subset of identified pions, were measured in the momentum range 10<P<30 GeV at 2.75 and 5.5 degrees. Small non-zero asymmetries are observed for the proton, while the deuteron results are consistent with zero. Recent calculations do not describe the data well.

4 data tables

The asymmetry for polarized photoproduction of inclusive hadrons from a polarized proton target. The errors are statistical only.

The asymmetry for polarized photoproduction of inclusive identified pions from a polarized proton target. The errors are statistical only.

The asymmetry for polarized photoproduction of inclusive hadrons from a polarized deuteron target. The errors are statistical only.

More…

Measurement of the spin asymmetry in the photoproduction of pairs of high p(T) hadrons at HERMES.

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Amarian, M. ; et al.
Phys.Rev.Lett. 84 (2000) 2584-2588, 2000.
Inspire Record 503784 DOI 10.17182/hepdata.43919

We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.

1 data table

Asymmetry measurement with a PT cut of 1.5 GeV on the hadron with the higher PT, and 1.0 GeV on the hadron with the lower PT.


Peripheral Dipion Production by Pions of 12 and 18 GeV/c

Jones, Lawrence W. ; Bleuler, E. ; Caldwell, D.O. ; et al.
Phys.Rev. 166 (1968) 1405-1430, 1968.
Inspire Record 944942 DOI 10.17182/hepdata.26526

A spark-chamber experiment on the peripheral production of 9245 pion pairs by 12- and 18-GeV/c incident pions is reported and analyzed in terms of a one-pion-exchange model in which the final state at the nucleon vertex contains generally one or more pions. The relevant dynamics and kinematics appropriate to this problem are reviewed, and the experimental and analysis techniques giving good resolution and detection-bias correction are discussed in some detail. From the results, fair agreement is found between the data and the one-pion-exchange calculation of the ρ0 production cross sections and of the associated missing-mass spectra. The ρ0 is found to be consistent with a single peak, and no evidence of peak splitting is observed. A search for a narrow s-wave dipion resonance is made with negative results. Normalizing to the ρ0 meson, the s-wave π+π− scattering cross section is computed from the abundant low-dipion-mass events, giving a cross section falling smoothly from 50 mb (300 MeV) to about 20 mb (600 MeV). No evidence of an s-wave resonance is found in this range of energies. Below 450 MeV, the pion-pion scattering asymmetry favors backward scattering (by 2½ standard deviations), which is consistent with a negative and falling J=T=0 phase shift. The extrapolated forward-backward asymmetry and the s-wave cross section are both consistent with a J=T=0 phase shift near|90°| at about 750 MeV.

6 data tables

Dipion production cross section under RHO resonance. Errors are statistical only.

Dipion production cross section under RHO resonance. Errors are statistical only.

RHO0 cross section. Errors are statistical only.

More…

ANGULAR AND ENERGY CHARACTERISTICS OF SECONDARY CHARGED PARTICLES FROM ANTI-PROTON PROTON INTERACTIONS AT 22.4-GEV/C MOMENTUM

Boos, E.G. ; Ermilova, D.I. ; Samoilov, V.V. ; et al.
Alma Ata Inst. High Energy Phys. Acad. Sci. - 85-04 (rec.Jul.86) 19 p, 1984.
Inspire Record 210833 DOI 10.17182/hepdata.13427

None

58 data tables

No description provided.

No description provided.

No description provided.

More…

CHARGE PROPERTIES OF ANNIHILATION EXCLUSIVE REACTIONS IN anti-p p INTERACTIONS AT 32-GeV/c

Bogolyubsky, M.Yu. ; Kiryunin, A.E. ; Kotova, A.I. ; et al.
Yad.Fiz. 45 (1987) 1667, 1987.
Inspire Record 234595 DOI 10.17182/hepdata.10409

None

24 data tables

No description provided.

No description provided.

No description provided.

More…

STUDY OF CORRELATIONS BETWEEN THE TRANSVERSE MOMENTA OF THE SECONDARY HADRONS IN anti-p p INTERACTIONS AT 32-GeV/c

Bogolyubsky, M.Yu. ; Borovikov, A.A. ; Bumazhnov, V.A. ; et al.
Sov.J.Nucl.Phys. 44 (1986) 631, 1986.
Inspire Record 223258 DOI 10.17182/hepdata.28957

None

1 data table

No description provided.