A Search for electron neutrino appearance at the Delta m**2 ~ 1- eV**2 scale

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Bazarko, A.O. ; Brice, Stephen J. ; et al.
Phys.Rev.Lett. 98 (2007) 231801, 2007.
Inspire Record 748380 DOI 10.17182/hepdata.113834

The MiniBooNE Collaboration reports first results of a search for $\nu_e$ appearance in a $\nu_\mu$ beam. With two largely independent analyses, we observe no significant excess of events above background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a two neutrino appearance-only oscillation model.

9 data tables

$\sin^2(2\theta)$ sensitivity and upper limit as a function of $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit. The $90\%$ and $3\sigma$ levels are shown for both the upper limit and sensitivity in the range $10^{-2} \text{eV}^2 < \Delta m^2 < 10^2 \text{eV}^2$.

The $\chi^2$ as a function of $\Delta m^2$ and $\sin^2(2\theta)$ for a 2-neutrino muon-to-electron oscillation fit. Note the value quoted in the third column is the total, and not the reduced, $\chi^2$ value (i.e. it has not been divided by the number of degrees of freedom).

Observed NuE data and background prediction for arXiv:0704.1500

More…

Updated MiniBooNE Neutrino Oscillation Results with Increased Data and New Background Studies

The MiniBooNE collaboration Aguilar-Arevalo, A.A. ; Brown, B.C. ; Conrad, J.M. ; et al.
Phys.Rev.D 103 (2021) 052002, 2021.
Inspire Record 1804293 DOI 10.17182/hepdata.114365

The MiniBooNE experiment at Fermilab reports a total excess of $638.0 \pm 132.8$ electron-like events ($4.8 \sigma$) from a data sample corresponding to $18.75 \times 10^{20}$ protons-on-target in neutrino mode, which is a 46\% increase in the data sample with respect to previously published results, and $11.27 \times 10^{20}$ protons-on-target in antineutrino mode. The additional statistics allow several studies to address questions on the source of the excess. First, we provide two-dimensional plots in visible energy and cosine of the angle of the outgoing lepton, which can provide valuable input to models for the event excess. Second, we test whether the excess may arise from photons that enter the detector from external events or photons exiting the detector from $\pi^0$ decays in two model independent ways. Beam timing information shows that almost all of the excess is in time with neutrinos that interact in the detector. The radius distribution shows that the excess is distributed throughout the volume, while tighter cuts on the fiducal volume increase the significance of the excess. We conclude that models of the event excess based on entering and exiting photons are disfavored.

15 data tables

The frequentist $1\sigma$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.

The frequentist $90\%$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.

The frequentist $99\%$ confidence region in $\sin^2(2\theta)$ $\Delta m^2$ for a 2-neutrino muon-to-electron oscillation fit.

More…

A precise measurement of the tau polarization and its forward-backward asymmetry at LEP.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 365-375, 1996.
Inspire Record 421815 DOI 10.17182/hepdata.47776

A measurement of theτ lepton polarization and its forward-backward asymmetry at the Z0 resonance using the OPAL detector is described. The measurement is based on analyses of τ→ρντ, ττπ(K)ντ,\(\tau\to e\bar \nu _e \nu _\tau\),\(\tau\to \mu \bar \nu _\mu\nu _\tau\) andτ→a1ντ decays from a sample of 89075 e+e−→τ+τ− candidates corresponding to an integrated luminosity of 117 pb−1. Assuming that theτ lepton decays according to V-A theory, we measure the averageτ polarization at √s=MZ to be 〈P〉=(−13.0±0.9±0.9)% and theτ polarization forward-backward asymmetry to be ApolFB=(−9.4±1.0±0.4)%, where the first error is statistical and the second systematic. These results are consistent with the hypothesis of lepton universality and, when combined, can be expressed as a measurement of sin2θefflept=0.2334±0.0012 within the context of the Standard Model.

1 data table

No description provided.


Forward - backward charge asymmetry of electron pairs above the Z0 pole

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 2616-2621, 1996.
Inspire Record 417098 DOI 10.17182/hepdata.50121

We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75<Mee<105GeV/c2. These results are consistent with the standard model values of 0.528±0.009 and 0.052±0.002, respectively.

1 data table

The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.