Cross section measurements of charged pion photoproduction in hydrogen and deuterium from 1.1-GeV to 5.5-GeV.

The Jefferson Lab Hall A & Jefferson Lab E94-104 collaborations Zhu, L.Y. ; Arrington, J. ; Averett, T. ; et al.
Phys.Rev.C 71 (2005) 044603, 2005.
Inspire Record 659852 DOI 10.17182/hepdata.31680

The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.

14 data tables

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 5.614 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 4.236 GeV.

Differential cross section for the process GAMMA N --> PI- P for an incident electron energy of 3.400 GeV.

More…

Analysis of the reaction gamma n ---> p pi- in the first and second resonance regions

Rossi, V. ; Piazza, A. ; Susinno, G. ; et al.
Nuovo Cim.A 13 (1973) 59-89, 1973.
Inspire Record 87242 DOI 10.17182/hepdata.37785

The final results of an experimental investigation of the reaction γ+n→p+π− performed with a deuterium bubble chamber at the 1 GeV Frascati electrosynchrotron are presented. Total and differential cross-sections on neutrons are extracted by means of the spectator model, the reliability of which has been checked by numerous tests and is extensively discussed. The problems of a possible isotensor component in the electromagnetic current, the time-reversal invariance of the electromagnetic interactions and the photoproduction of the Roper resonance are considered in detail.

21 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of charged pions on deuterium in the first resonance region

Von Holtey, G. ; Knop, G. ; Stein, H. ; et al.
Nucl.Phys.B 70 (1974) 379-389, 1974.
Inspire Record 94755 DOI 10.17182/hepdata.32319

Photoproduction of π + and π − on deuterium has been measured in the photon energy range from 240 to 400 MeV and for pion c.m. angles between 15° and 180°. The pions were analysed in angle and momentum by a magnetic spectrometer. From the measured π − / π + ratio, corrected for Coulomb interactions in the final state, differential cross sections of the reaction γ +n→ π − +p were calculated. Together with the π + photoproduction our data show no isotensor contribution. Comparison of our data with the recent experiments done on the inverse reaction shows no evidence of a violation of time reversal invariance. With the measured π + photoproduction on deuterium, a test of the spectator model has been made. Using the closure-approximation of Chew and Lewis our data agree within a range of ±10%.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of Charged Mesons from Free Nucleons for Bombarding Gamma-Ray Energies Near 275 MeV

Garelick, D. ; Cooperstein, G. ;
Phys.Rev. 136 (1964) B201-B213, 1964.
Inspire Record 944969 DOI 10.17182/hepdata.26720

The differential cross section for the photoproduction of a π− meson from the neutron bound in the deuteron was measured for pion laboratory angles of 76°, 96°, and 118° at incident gamma-ray energies in the region of 275 MeV. The π− meson and the high-energy proton were detected. The pion momentum and angle were measured by sets of spark chambers situated in front of and behind a magnetic field. The proton angle and range were also measured with spark chambers. To calculate "free" neutron cross sections from our data, we used a modified version of the extrapolation method suggested by Chew and Low. By observing the π+ only, the differential cross section for π+ photoproduction from hydrogen also was measured. As determined by this experiment, the differential cross section for photoproduction of a π− meson from a "free" neutron and the differential cross section for photoproduction of a π+ meson from hydrogen are as follows: Eγlab≃275 MeV These results disagree with the dispersion theory predictions of Chew, Goldberger, Low, and Nambu. They also disagree with McKinley's dispersion theory calculations which include a bipion or ρ-meson term in the production amplitudes.

2 data tables

No description provided.

No description provided.


Photoproduction of charged pions in deuterium

Beneventano, M. ; Bernardini, G. ; Stoppini, G. ; et al.
Nuovo Cim. 10 (1958) 1109-1142, 1958.
Inspire Record 1184858 DOI 10.17182/hepdata.37846

perimental analysis of the process is presented. Theσ(−)/σ(+) ratio has been measured in the photon energy interval (170÷230) MeV and Lab. angles 45°, 75°, 105°, 150°. The results are interpreted on the base of the impulse approximation with the aim of getting information on the processhv+n →π −+p.

6 data tables

No description provided.

No description provided.

No description provided.

More…