Study of the Reaction $p p$ (Polarized) $\to p \pi^+ n$ With Polarized Beam From 3-{GeV}/$c$ to 12-{GeV}/$c$

Wicklund, A.B. ; Arenton, M.W. ; Ayres, D.S. ; et al.
Phys.Rev.D 34 (1986) 19, 1986.
Inspire Record 17565 DOI 10.17182/hepdata.3936

We present density-matrix elements and single-spin correlations for the reaction p↑p→pπ+n at 3, 4, 6, and 11.75 GeV/c, using both longitudinal and transverse beam polarizations. For small momentum transfers, the spin correlations are mainly due to off-shell π+p elastic scattering, while for larger t there are large polarization effects associated with the production dynamics for p↑p→Δ++n. Comparison of longitudinal and transverse polarization correlations suggests that the Δ++-production spin effects are due mainly to unnatural-parity exchanges. We present a model-dependent amplitude analysis, and extract the energy dependence of the natural- and unnatural-parity-exchange contributions.

36 data tables

Unpolarized cross sections.

Unpolarized cross sections.

Unpolarized cross sections.

More…

The Normalization of p p Polarization Between 200-MeV and 520-MeV

Amsler, C. ; Bugg, D.V. ; Axen, D. ; et al.
J.Phys.G 4 (1978) 1047-1053, 1978.
Inspire Record 135489 DOI 10.17182/hepdata.38559

The absolute normalisation of the polarisation in pp elastic scattering at 24 degrees lab has been determined by means of a double-scattering experiment to an accuracy of +or-1.5% at five energies between 200 and 520 MeV.

1 data table

No description provided.


Energy Dependence of Spin Spin Effects in p p Elastic Scattering at 90-Degrees Center-Of-Mass

Crosbie, E.A. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.D 23 (1981) 600, 1981.
Inspire Record 152851 DOI 10.17182/hepdata.24077

The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.

13 data tables
More…

The Acceleration of Polarized Protons to 22-{GeV}/$c$ and the Measurement of Spin Spin Effects in $p$ (Polarized) + $p$ (Polarized) $\to p + p$

Khiari, F.Z. ; Cameron, P.R. ; Court, G.R. ; et al.
Phys.Rev.D 39 (1989) 45, 1989.
Inspire Record 262472 DOI 10.17182/hepdata.23245

Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter Ann in large- P⊥2 proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P⊥2=0.3 (GeV/c)2 at 13.3 GeV/c. At 18.5 GeV/c we found that Ann=(-2±16)% at P⊥2=4.7 (GeV/c)2, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P⊥2.

3 data tables

No description provided.

2.2 GeV point taken from Brown et al., PR D31(85) 3017.

No description provided.


Measurement of Spin Effects in $p$ (Polarized) $p$ (Polarized) $\to p p$ at 18.5-{GeV}/$c$

Crabb, D.G. ; Gialas, I. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 60 (1988) 2351, 1988.
Inspire Record 261135 DOI 10.17182/hepdata.20096

We measured the analyzing power A and the spin-spin correlation parameter Ann in medium-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the 18.5-GeV/c Brookhaven Alternating-Gradient Synchrotron polarized-proton beam. We found sharp dips in both A and Ann, which occur at different P⊥2 values. The unexpected sharp structure in the spin-spin force occurs near P⊥2=2.3 (GeV/c)2 where the elastic cross section has no apparent structure.

1 data table

Errors contain both statistics and systematics.


Strong Energy Dependence of the Analyzing Power in the $p p \to d \pi^+$ Reaction and the Question of an Isovector Dibaryon Resonance. 2.

Bertini, R. ; Roy, G. ; Durand, J.M. ; et al.
Phys.Lett.B 203 (1988) 18-21, 1988.
Inspire Record 247925 DOI 10.17182/hepdata.29981

Forward angular distributions of the analysing power for the pp→d π + reaction have been measured at six energies T p =1.2, 1.4, 1.6, 1.8, 2.0, 2.3 GeV. A strong energy dependence is observed for A y 0 ( t =0) and A y 0 ( θ CM π =90°). The data are compared with the backward angular distributions previously published and suggest the existence of a resonant state in the pp system at the approximate energy of 2.7 GeV.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Energy Dependence of Spin Effects in $p$ (Polarized) $p$ (Polarized) $\to p p$

Court, G.R. ; Crabb, D.G. ; Gialas, I. ; et al.
Phys.Rev.Lett. 57 (1986) 507, 1986.
Inspire Record 229812 DOI 10.17182/hepdata.20190

We measured the analyzing power A and the spin-spin correlation parameter Ann, in large-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the polarized-proton beam at the Brookhaven Alternating-Gradient Synchrotron. We also used our polarimeter to measure A at small P⊥2 at 13 GeV with good precision and found some deviation from the expected 1Plab behavior. At 18.5 GeV/c we found Ann=(−2±16)% at P⊥2=4.7 (GeV/c)2. Comparison with lower-energy data from the Argonne Zero-Gradient Synchrotron shows a sharp and surprising energy dependence for Ann at large P⊥2.

3 data tables

POL is error weighted average of polarized beam and target measurements.

POL is error-weighted average of polarized beam and target measurements.

POL is error-weighted average of polarized beam and target measurement.


Measurement of the Analyzing Power for $p p$ (Polarized) $\to p p$ at $p^-$transverse**2 = 6.5-{GeV}/$c^2$

Cameron, P.R. ; Crabb, D.G. ; DeMuth, G.E. ; et al.
Phys.Rev.D 32 (1985) 3070, 1985.
Inspire Record 216507 DOI 10.17182/hepdata.23543

The spin analyzing power A in 28-GeV/c proton-proton elastic scattering was measured at P⊥2=6.5 (GeV/c)2 using a polarized proton target and a high-intensity unpolarized proton beam at the Brookhaven National Laboratory Alternating Gradient Synchrotron. The result of (24±8)% confirms that the analyzing power is large and rising in the large-P⊥2 region.

1 data table

No description provided.


Measurement of Proton Proton Elastic Scattering at 6-GeV/c in Polarized Initial and Final Spin States

Borghini, M. ; De Boer, W. ; Fernow, Richard C. ; et al.
Phys.Rev.D 17 (1978) 24-41, 1978.
Inspire Record 134418 DOI 10.17182/hepdata.4518

The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range P⊥2=0.60−1.0 (GeV/c)2 using a 65% polarized target and a 75% polarized proton beam of intensity 3 × 109 protons/pulse. The polarization of the recoil proton was simultaneously measured with a well calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at our largest P⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data gives the magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the four double-flip transversity cross sections are nonzero.

4 data tables

No description provided.

THE FIVE INDEPENDENT PURE FOUR-SPIN CROSS SECTIONS AS DERIVED FROM THE EIGHT MEASURED THREE-SPIN CROSS SECTIONS ASSUMING P AND T INVARIANCE. THE ABSOLUTE DIFFERENTIAL CROSS SECTION VALUES ASSUME THAT THE SPIN-AVERAGED D(SIG)/DT IS 2.25, 1.17, 0.365 AND 0.167 MB/GEV**2 FOR EACH VALUE OF PT**2 RESPECTIVELY.

WOLFENSTEIN PARAMETERS. POL(NAME=A) IS (N000) OR (0N00), THE ANALYZING POWER AVERAGED OVER TARGET OR BEAM POLARIZATION. POL(NAME=P) IS (00N0), THE POLARIZATION PARAMETER. TIME-REVERSAL INVARIANCE REQUIRES THAT P = A. POL.POL(NAME=CNN) IS (NN00) USING T-INVARIANCE. POL.POL(NAME=DNN) IS (0N0N). POL.POL(NAME=KNN) IS (N00N). POL.POL(NAME=C3N) IS A COMPONENT OF THE TRIPLE SPIN CORRELATION TENSOR. PARITY INVARIANCE REQUIRES THAT C3N = P.

More…

Proton Polarization in $p p$ Elastic and Inclusive Processes at Beam Momenta From 20-{GeV}/$c$ to 400-{GeV}/$c$

Corcoran, M. ; Ems, S.C. ; Gray, S.W. ; et al.
Phys.Rev.D 22 (1980) 2624, 1980.
Inspire Record 9773 DOI 10.17182/hepdata.4324

The polarization of the recoil proton has been measured in both high-energy elastic and inclusive proton-proton scattering at the internal-target area of Fermi National Accelerator Laboratory. The polarization in elastic scattering was measured at a number of center-of-mass energies up to s=19.7 GeV. Indications of negative polarization were seen at the higher center-of-mass energies for t values of -0.6, -0.8, and -1.0 (GeV/c)2. In the inclusive process p+p→p↑+X the polarization was found to be independent of beam energy from 100 to 400 GeV for xF values of -0.7, -0.8, -0.9. The polarization at PT=1.0 GeV/c, xF=−0.7 and xF=−0.8 was less than 2.5%. This is significantly lower than the corresponding measurements reported for Λ0 inclusive polarization.

10 data tables

No description provided.

No description provided.

No description provided.

More…