Single Spin Asymmetry $A_N$ in Polarized Proton-Proton Elastic Scattering at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 719 (2013) 62-69, 2013.
Inspire Record 1117881 DOI 10.17182/hepdata.102952

We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer squared $t$ range $0.003 \leqslant |t| \leqslant 0.035$ $\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

3 data tables

The asymmetry $\varepsilon(\varphi)/(P_B + P_Y)$ for various $t$-intervals.

The measured single spin asymmetry $A_N$ for five $-t$ intervals.

Fitted value of $r_5$.


Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table

No description provided.



Elastic neutron scattering at 96 MeV from 12C and Pb-208

Klug, J. ; Blomgren, J. ; Atac, A. ; et al.
Phys.Rev.C 68 (2003) 064605, 2003.
Inspire Record 640465 DOI 10.17182/hepdata.25267

A facility for detection of scattered neutrons in the energy interval 50–130MeV, SCANDAL, has recently been installed at the 20–180MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from C12 and Pb208 has been studied at 96MeV in the 10°–70° interval. The achieved energy resolution, 3.7MeV, is about an order of magnitude better than for any previous experiment above 65MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.

2 data tables

Measured differential cross section for elastic scattering on PB208. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.

Measured differential cross section for elastic scattering on C12. The first DSYS systematic error is from the uncertainty in the contributions from multiple scattering corrections and the second DSYS refers to the cross section uncertainty due to the uncertainty in the angle measurement.


Measurement of the Absolute Differential Cross Section for np Elastic Scattering at 194 MeV

Sarsour, M. ; Peterson, T. ; Planinic, M. ; et al.
Phys.Rev.C 74 (2006) 044003, 2006.
Inspire Record 710735 DOI 10.17182/hepdata.31683

A tagged medium-energy neutron beam has been used in a precise measurement of the absolute differential cross section for np back-scattering. The results resolve significant discrepancies within the np database concerning the angular dependence in this regime. The experiment has determined the absolute normalization with 1.5% uncertainty, suitable to verify constraints of supposedly comparable precision that arise from the rest of the database in partial wave analyses. The analysis procedures, especially those associated with evaluation of systematic errors in the experiment, are described in detail so that systematic uncertainties may be included in a reasonable way in subsequent partial wave analysis fits incorporating the present results.

1 data table

Final differential cross sections averaged over data samples.


Cross-sections of He-4 interaction with protons at 5-GeV/c

Blinov, A.V. ; Chadeyeva, M.V. ; Grechko, V.E. ; et al.
Phys.Atom.Nucl. 64 (2001) 907-909, 2001.
Inspire Record 508748 DOI 10.17182/hepdata.31229

The total and topological 4Hep cross sections as well as the cross sections of the separate 4Hep interaction channels and the differential cross sections of the elastic 4Hep scattering were measured using the 2m hydrogen bubble chamber exposed to a separated beam of alpha-particles from the ITEP synchrotron at 5 GeV/c (the kinetic energy of the initial protons in the nuclear rest frame was 620 MeV). The data obtained have been compared with the results of the previous experiments and with the theoretical predictions based on the Glauber-Sitenko multiple-scattering theory.

3 data tables

Only statistical errors are presented.

Only statistical errors are presented.

Only statistical errors are presented.


Cross-sections of He-4 interaction with protons and He-4 p elastic scattering at 2.7-GeV/c

Abdullin, S.K. ; Blinov, A.V. ; Chadeeva, M.V. ; et al.
Phys.Atom.Nucl. 56 (1993) 536-539, 1993.
Inspire Record 344565 DOI 10.17182/hepdata.40023

The 2m hydrogen bubble chamber was exposed to a separated beam of α-particles from the ITEP synchrotron. The momentum of the 4 He-nuclei beam averaged over the bubble-chamber fiducial volume was equal to 2.7 GeV/ c (the kinetic energy of the initial protons in the nuclear rest frame was T p = 220 MeV). The total and topological cross sections were measured as well as the cross section of separate 4 He-p interaction channels and the differential cross sections d σ d t of the elastic 4 He-p scattering. The experimental results have been compared with the data of the previous experiments and with the theoretical predictions based on the Glauber-Sitenko multiple-scattering theory.

1 data table

No description provided.


Cross sections for interaction of tritium nuclei with protons and elastic H-3 p scattering at momentum 5-GeV/c.

Abdullin, S.K. ; Blinov, A.V. ; Vanyushin, I.A. ; et al.
Sov.J.Nucl.Phys. 49 (1989) 106-107, 1989.
Inspire Record 287546 DOI 10.17182/hepdata.2229

None

3 data tables

No description provided.

No description provided.

No description provided.


Measurement, With a Free Neutron Beam, of Absolute Neutron - Proton Forward Elastic Scattering Differential Cross-section at Intermediate-energies

Terrien, Y. ; Lugol, J.C. ; Saudinos, J. ; et al.
Phys.Rev.Lett. 59 (1987) 1534-1536, 1987.
Inspire Record 247964 DOI 10.17182/hepdata.20103

The differential cross section in free n-p forward elastic scattering has been measured for incident neutron energies of 378, 481, 582, 683, 784, 884, and 1085 MeV and for momentum transfer 0.01<‖t‖<0.08 (GeV/c)2. The experiment used a recoil-detector ionization chamber which served at the same time as a gas target. Special care has been taken to obtain a precise absolute normalization.

7 data tables

No description provided.

No description provided.

No description provided.

More…

STUDY OF THE MECHANISM OF THE He-3 p ---> p p d REACTION AT He-3 MOMENTUM OF 5-GeV/c

Blinov, A.V. ; Chuvilo, I.V. ; Drobot, V.V. ; et al.
Nucl.Phys.A 451 (1986) 701-727, 1986.
Inspire Record 214108 DOI 10.17182/hepdata.17644

The mechanism of the reaction 3 He + p → p + p + d is studied by making use of the ITEP 80 cm liquid-hydrogen bubble chamber exposed to a beam of 5 GeV/ c 3 He nuclei. The reaction cross section is equal to 20.6 ± 0.3 mb. The phase-space regions associated with quasifree scattering (QFS) and final-state interactions (FSI) are selected. Angular, mass and momentum distributions of the reaction products are obtained in the entire kinematically allowed range. The experimental data in the QFS region are compared with theoretical calculations based on the simplest pole-diagram approximation. The 3 He and deuteron wave functions (WF) correspond to the realistic RSC potential. The D-wave components of these WF are taken into account. The absolute value of the cross section and shape of the distributions are described as a whole reasonably well within the frame of the model considered in the kinematical region where FSI may be neglected. But at large spectator momenta there is an essential disagreement. The possible reasons for this are discussed.

2 data tables

No description provided.

No description provided.