Inclusive phi Production in pi- p Interactions at 16-GeV/c

The Bari-Bonn-CERN-Daresbury-Glasgow-Liverpool-Milan-Vienna collaboration Ghidini, B. ; Navach, F. ; Palano, A. ; et al.
Phys.Lett.B 68 (1977) 186, 1977.
Inspire Record 119248 DOI 10.17182/hepdata.48929

Inclusive φ production is studied in π − p collisions at 16 GeV/ c . The φ cross section for Feynman variable x φ > 0.2 is found to be (15.5 ± 3.6) μb. This leads to an extrapolated cross section of (29.9 ± 7.0) μb for x φ > 0.0. Fitting the momentum transfer squared distribution of the φ to the form e −bp 2 T gives an average slope of b = (2.4 ± 0.3) (GeV/ c −2 for x φ > 0.5.

4 data tables

No description provided.

No description provided.

DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.

More…

Inclusive single-particle distributions in $\pi^{\pm}$ $p$ reactions at 8 and 16 {GeV/c}

Bosetti, P. ; Grassler, H. ; Kirk, H. ; et al.
Nucl.Phys.B 54 (1973) 141-160, 1973.
Inspire Record 87988 DOI 10.17182/hepdata.811

Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.

73 data tables

No description provided.

No description provided.

No description provided.

More…

Interference between (p,f0 ...) and (rho0,b0,...) exchanges in pion diffraction dissociation at 16 gev/c

The Aachen-Berlin-Bonn-CERN-Heidelberg collaboration Beaupre, J.V. ; Deutschmann, M. ; Graessler, H. ; et al.
Phys.Lett.B 41 (1972) 393-396, 1972.
Inspire Record 75614 DOI 10.17182/hepdata.28235

It is found in the reactions π ± p →( π ± π + π − )p, believed to be dominated by diffraction dissociation, that the d σ d t′ distributions show a “cross-over” effect at t ′ ≈ 0.15, similar to the effect observed in elastic scattering. This gives evidence for the interference of ( ϱ 0 , B 0 ,…)-exchanges with ( P , f 0 , …) -exchanges in pion diffraction dissociation reactions. No such evidence is found for baryon dissociation, π ± p → π ± (p π + π − ), at the same energy.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Peripheral Dipion Production by Pions of 12 and 18 GeV/c

Jones, Lawrence W. ; Bleuler, E. ; Caldwell, D.O. ; et al.
Phys.Rev. 166 (1968) 1405-1430, 1968.
Inspire Record 944942 DOI 10.17182/hepdata.26526

A spark-chamber experiment on the peripheral production of 9245 pion pairs by 12- and 18-GeV/c incident pions is reported and analyzed in terms of a one-pion-exchange model in which the final state at the nucleon vertex contains generally one or more pions. The relevant dynamics and kinematics appropriate to this problem are reviewed, and the experimental and analysis techniques giving good resolution and detection-bias correction are discussed in some detail. From the results, fair agreement is found between the data and the one-pion-exchange calculation of the ρ0 production cross sections and of the associated missing-mass spectra. The ρ0 is found to be consistent with a single peak, and no evidence of peak splitting is observed. A search for a narrow s-wave dipion resonance is made with negative results. Normalizing to the ρ0 meson, the s-wave π+π− scattering cross section is computed from the abundant low-dipion-mass events, giving a cross section falling smoothly from 50 mb (300 MeV) to about 20 mb (600 MeV). No evidence of an s-wave resonance is found in this range of energies. Below 450 MeV, the pion-pion scattering asymmetry favors backward scattering (by 2½ standard deviations), which is consistent with a negative and falling J=T=0 phase shift. The extrapolated forward-backward asymmetry and the s-wave cross section are both consistent with a J=T=0 phase shift near|90°| at about 750 MeV.

6 data tables

Dipion production cross section under RHO resonance. Errors are statistical only.

Dipion production cross section under RHO resonance. Errors are statistical only.

RHO0 cross section. Errors are statistical only.

More…

Low-energy differential cross-sections of pion proton (pi+- p) scattering. 2: Phase shifts at T(pi) = 32.7-MeV, 45.1-MeV, and 68.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2159-2165, 1995.
Inspire Record 404659 DOI 10.17182/hepdata.25955

We report on measurements of the differential π±p cross section at pion energies Tπ=32.7, 45.1, and 68.6 MeV. The measurements, covering the angular range 25°≤θlab≤123°, have been carried out at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland, employing the magnet spectrometer LEPS. The absolute normalization of the π±p cross sections have been achieved by relating them to the electromagnetic cross sections of μ±12C scattering. The results are in agreement with those of our preceding measurements at Tπ=32.2 and 45.1 MeV insofar as they overlap with the region of the Coulomb nuclear interference investigated there. A comparison with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, which has formed the basis for the determination of the ‘‘experimental’’ σ term, reveals considerable deviations. These are most pronounced for the π+p cross sections at Tπ=32.7 and 45.1 MeV. Single energy partial wave fits result in S-wave contributions, which are about 1° lower in magnitude then those specified by the KH80 solution. The data at 68.6 MeV are in good agreement with the phase shift analysis.

3 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.


Low-energy differential cross-sections of pion proton (pi+- p) scattering. 1: The Isospin even forward scattering amplitude at T(pi) = 32.2-MeV and 44.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2144-2158, 1995.
Inspire Record 404658 DOI 10.17182/hepdata.25972

The values of the pion nucleon (πN) σ term, as determined, on the one hand, from experimental pion nucleon scattering by means of dispersion relations and, on the other hand, from baryon masses by means of chiral perturbation theory, differ by 10 to 15 MeV. The origin of this discrepancy is not yet understood. If the difference between the two values is attributed to the scalar current of strange sea quark pairs within the proton, the contribution to the proton mass would be of the order of 120 MeV. The discrepancy may hint at either theoretical deficiencies or an inadequate πN database. In order to provide reliable experimental data we have measured angular distributions of elastic pion proton scattering at pion energies Tπ=32.2 and 44.6 MeV using the magnet spectrometer LEPS located at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland. From the data covering the region of the Coulomb nuclear interference, the real parts of the isospin-even forward scattering amplitude ReD+(t=0), have been determined as a function of energy. The results have been compared with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, revealing discrepancies most pronounced for the π+p data. The experimentally determined values for ReD+(t=0), however, support the KH80 prediction (which is based on πN data available in 1979).

2 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.


STUDY OF K*- (890) AND K*- (1430) PRODUCTION IN THE REACTION K- P ---> ANTI-K0 PI- P AT 100-GEV/C AND 175-GEV/C

Bromberg, C. ; Dickey, J. ; Fox, G. ; et al.
Phys.Rev.D 29 (1984) 2469-2475, 1984.
Inspire Record 205297 DOI 10.17182/hepdata.23731

The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.

8 data tables

No description provided.

No description provided.

No description provided.

More…

STUDY OF A2 PRODUCTION IN THE REACTION PI- P ---> K0 K- P AT 50-GEV/C, 100-GEV/C, AND 175-GEV/C

Bromberg, C. ; Dickey, J.o. ; Fox, G. ; et al.
Phys.Rev.D 27 (1983) 1-11, 1983.
Inspire Record 191493 DOI 10.17182/hepdata.23901

The reaction π−p→K0K−p has been measured from 50 to 175 GeV/c. The production characteristics of the A2 have been analyzed. We find spin and t dependence similar to lower energies, but the cross section falls rapidly with energy. In a Regge description of π−p→A2−p our data imply a rather small Pomeron-exchange component.

6 data tables

No description provided.

RAW CROSS SECTION WITHIN MASS CUTS.

No description provided.

More…

A Partial Wave Analysis of the ($K^+ K^- \pi^-$) System Produced in $\pi^- p \to K^+ K^- \pi^- p$ at 16-{GeV}/$c$

The Aachen-Bari-Bonn-CERN-Glasgow-Liverpool-Milan collaboration Armstrong, T.A. ; Baccari, B. ; Bonesini, M. ; et al.
Nucl.Phys.B 202 (1982) 1-20, 1982.
Inspire Record 169445 DOI 10.17182/hepdata.44589

The reaction π − p → K + K − π − p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K + K − π − ) system (1.3–2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t -channel helicity. The 1 + S K ∗ K wave dominates the low-mass (K + K − π − ) region. We observe an enhancement in 2 − P K ∗ K wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.

3 data tables

TOTAL ACCEPTANCE CORRECTED CROSS SECTION.

ACCEPTANCE CORRECTED.

MOST IMPORTANT CONTRIBUTING STATES CORRECTED FOR ACCEPTANCE.


A Study of the Reaction $\pi^- p \to \phi \phi n$ at 16-{GeV}/$c$

The Aachen-Bari-Bonn-CERN-Glasgow-Liverpool-Milan collaboration Armstrong, T.A. ; Baccari, B. ; Booth, P.S.L. ; et al.
Nucl.Phys.B 196 (1982) 176-188, 1982.
Inspire Record 165251 DOI 10.17182/hepdata.34217

The reaction π − p → φφ n has been isolated at 16 GeV/ c and its cross section determined to be 40 ± 10 nb. The φφ mass spectrum shows a threshold enhancement between 2.1 and 2.5 GeV. A successful description of the angular content of the φφ system requires two interferingss J P = 2 + states.

2 data tables

No description provided.

SLOPE OF DIFFERENTIAL TP(P=3,P=2) DISTRIBUTION.