Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 112 (2014) 032302, 2014.
Inspire Record 1255072 DOI 10.17182/hepdata.73343

We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.

46 data tables

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.

More…

Measurement of the differences in the total cross section for antiparallel and parallel longitudinal spins and a measurement of parity nonconservation with incident polarized protons and antiprotons at 200-GeV/c.

The E581/704 collaboration Grosnick, D.P. ; Hill, D.A. ; Kasprzyk, T. ; et al.
Phys.Rev.D 55 (1997) 1159-1187, 1997.
Inspire Record 420534 DOI 10.17182/hepdata.22329

The highest-energy measurement of ΔσL(pp) and the first ever measurement of ΔσL(p¯p), the differences between proton-proton and antiproton-proton total cross sections for pure longitudinal spin states, are described. Data were taken using 200-GeV/c polarized beams incident on a polarized-proton target. The results are measured to be ΔσL(pp)=−42±48(stat)±53(syst) μb and ΔσL(p¯p)=−256±124(stat)±109(syst) μb. Many tests of systematic effects were investigated and are described, and a comparison to theoretical predictions is also given. Measurements of parity nonconservation at 200 GeV/c in proton scattering and the first ever of antiproton scattering have also been derived from these data. The values are consistent with zero at the 10−5 level.

2 data tables

No description provided.

No description provided.


TRANSVERSE SPIN DEPENDENCE OF THE P P TOTAL CROSS-SECTION DELTA sigma-t FROM 0.8-GEV/C TO 2.5-GEV/C

Madigan, W.P. ; Bell, D.A. ; Buchanan, J.A. ; et al.
Phys.Rev.D 31 (1985) 966-975, 1985.
Inspire Record 216906 DOI 10.17182/hepdata.23564

The difference ΔσT=σ(↓↑)-σ(↑↑) between the proton-proton total cross sections for protons in pure transverse-spin states, was measured at incident momenta 0.8 to 2.5 GeV/c in experiments performed at the Los Alamos Clinton P. Anderson Meson Physics Facility and the Argonne Zero Gradient Synchrotron. In agreement with other data, peaks were observed at center-of-mass energies of 2.14 and 2.43 GeV/c2, where D21 and G41 dibaryon resonances have been proposed.

2 data tables

DATA FROM LAMPF EXPERIMENT.

DATA FROM ARGONNE EXPERIMENT.


Measurement of the Transverse Spin Dependence of the p p Total Cross-Section in the 1-GeV/c-3-GeV/c Region

Biegert, E.K. ; Buchanan, J.A. ; Clement, J.M. ; et al.
Phys.Lett.B 73 (1978) 235-238, 1978.
Inspire Record 134224 DOI 10.17182/hepdata.27471

The pp total cross section difference between pure transverse spin states was measured in the laboratory momentum range 1–3 GeV/ c . Significant differences were found and these differences show striking energy dependence. This structure is in disagreement with the predictions of simple exchange models.

2 data tables

No description provided.

REVISED DATA (J. D. LESIKAR, PRIV COMM, 19 JUN 1981). NOW CORRECTED FOR COULOMB-NUCLEAR INTERFERENCE. IN ADDITION, THE LOWEST MOMENTUM DATA POINT IS NOW KNOWN TO BE IN ERROR.


Measurement of sigma(tot) in proton proton scattering in pure spin states

Parker, E.F. ; Ratner, L.G. ; Brown, B.C. ; et al.
Phys.Rev.Lett. 31 (1973) 783-786, 1973.
Inspire Record 83779 DOI 10.17182/hepdata.21350

An experiment was done using the new accelerated polarized proton beam at the Argonne National Laboratory zero-gradient synchrotron and a polarized proton target. The total cross section for proton-proton scattering at 3.5 GeV/c was measured in the spin states ↑↑ and ↑↓ perpendicular to the beam direction. The two cross sections were found to be equal within the experimental error of ±5%.

1 data table

TOTAL CROSS SECTION DIFFERENCE FOR PURE TRANSVERSE SPIN STATES.