Analyzing powers for the pi- p(pol.) --> pi0 n reaction across the Delta(1232) resonance.

Gaulard, C.V. ; Riedel, C.M. ; Comfort, Joseph R. ; et al.
Phys.Rev.C 60 (1999) 024604, 1999.
Inspire Record 483795 DOI 10.17182/hepdata.51678

High quality analyzing powers for the π−p→→π0n reaction have been obtained with a polarized proton target over a broad angular range at incident kinetic energies of 98.1, 138.8, 165.9, and 214.4 MeV. This experiment nearly doubled the existing πN single-charge-exchange database for energies ranging from 10 to 230 MeV, with 36 new analyzing powers. The Neutral Meson Spectrometer was used to detect the outgoing neutral pions. The data are well described by recent phase-shift analyses. When combined with high-precision and accurate cross section data at the same energies, the data can provide a good test of the degree of isospin breaking in the region of the Δ(1232) resonance. They will also be helpful for constraining the evaluation of the pion-nucleon σ term from the scattering amplitudes.

4 data tables

First error is total uncertainty.

First error is total uncertainty.

First error is total uncertainty.

More…

DIFFERENTIAL CROSS-SECTIONS FOR RADIATIVE CAPTURE OF PIONS ON HYDROGEN IN THE DELTA (1232) REGION: A TEST OF THE ISOSPIN STRUCTURE AND T SYMMETRY OF HADRONIC ELECTROMAGNETIC INTERACTIONS

Tran, M.T. ; Guex, L.H. ; Alder, J.C. ; et al.
Nucl.Phys.A 324 (1979) 301-334, 1979.
Inspire Record 147550 DOI 10.17182/hepdata.37080

Radiation capture of π − on hydrogen has been measured in the momentum range from p π − = 210 MeV/ c to p π − = 385 MeV/ c and for c.m. angles between 30° and 120°, covering the Δ (1232) resonance. The unambiguous separation of the events from the charge exchange background is based on precise neutron time-of-flight measurements. Detector efficiencies were carefully determined in separate experiments. The experimental results are in good agreement with those of the inverse reaction and with most recent multipole analyses. An upper limit of ±2% can be set on the contribution of the isotensor term to the transition amplitude. A time reversal violating phase, when added to the resonant M 1+ 3 amplitude in the Donnachie-Shaw model, is found to be consistent with zero.

1 data table

This results was extracted from the cross sections for the inverse reactionPI- P --> GAMMA N via detailed balance by applying relation: D(SIG(GAMMA))/D(OM EGA)=D(SIG(PI-))/D(OMEGA)*P(PI)**2/2/P(GAMMA)**2.


Measurement of the Antilambda polarization in nu/mu charged current interactions in the NOMAD experiment.

The NOMAD collaboration Astier, P. ; Autiero, D. ; Baldisseri, A. ; et al.
Nucl.Phys.B 605 (2001) 3-14, 2001.
Inspire Record 554759 DOI 10.17182/hepdata.48928

We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.

2 data tables

Lambdabar polarization in regions of Feynman X (XL).

Lambdabar polarization in regions of the Bjorken scaling variable X.


MEASUREMENT OF THE ASYMMETRY PARAMETER A IN PI- P ELASTIC AND CHARGE EXCHANGE SCATTERING AT PION ENERGIES T (PI) = 98-MEV, 238-MEV, 292-MEV, AND 310-MEV

Alder, J.c. ; Joseph, C. ; Perroud, J.p. ; et al.
Phys.Rev.D 27 (1983) 1040-1055, 1983.
Inspire Record 192365 DOI 10.17182/hepdata.23839

The asymmetry parameter A in π−p elastic scattering at incident pion laboratory kinetic energies Tπ of 98, 238, and 2922 MeV and in π−p charge-exchange scattering π−p→π0n at Tπ=238, 292, and 310 MeV have been measured over a wide range of scattering angles (typically from about 60° to 130° c.m.) with a polarized proton target. The data have been used in an energy-independent phase-shift analysis to improve the precision of the pion-nucleon phase shifts, to set new limits on violation of isospin conservation in the pion-nucleon S wave, and to confirm significant charge dependence in the P32 wave.

6 data tables

Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).

Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).

Axis error includes +- 0.0/0.0 contribution (?////BACKGROUND SUBTRACTION SMALL).

More…

Differential Cross-Sections for pi- p --> gamma n in the First Resonance Region

Guex, L.H. ; Joseph, C. ; Tran, M.T. ; et al.
Phys.Lett.B 55 (1975) 101-106, 1975.
Inspire Record 90715 DOI 10.17182/hepdata.27879

Differential cross-sections for negative pion radiative capture on protons at c.m. angles of 60°, 90°, and 120° have been measured at nine incident laboratory energies between 110 and 270 MeV. Comparison with measured cross-sections for pion photoproduction and with conventional multipole analyses shows neither evidence for a violation of time reversal invariance nor for an isotensor component of the electromagnetic current of hardrons.

7 data tables

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

Axis error includes +- 0.0/0.0 contribution (QUOTED ERRORS INCLUDE THE 5 PCT AND 3 PCT UNCERTAINTIES IN THE NEUTRON AND PHOTON DETECTOR EFFICIENCIES).

More…

K0(L) p Charge Exchange Scattering from 550-MeV/c to 1000-MeV/c

Edelstein, R.M. ; Fisk, H.E. ; Joseph, P. ; et al.
Phys.Rev.D 14 (1976) 702-707, 1976.
Inspire Record 115726 DOI 10.17182/hepdata.24674

Employing a neutral kaon beam at the Argonne Zero Gradient Synchrotron, a high-resolution magnetic spectrometer, and a neutron detector, differential cross sections have been obtained in the forward direction [0.045<|t|<0.18 (GeV/c)2] for the reaction KL0p→K+n. Previous studies of the time-reversed process in deuterium, K+d→K0p(p), have not yielded direct cross-section measurements in the forward direction because there is an inhibition of the non-spin-flip process in deuterium due to the Pauli exclusion principle. Nevertheless, our data are in agreement with the extracted free-neutron cross sections of deuterium studies as determined from the impulse and closure approximations.

3 data tables

No description provided.

No description provided.

No description provided.