Measurement of elliptic flow of light nuclei at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 034908, 2016.
Inspire Record 1416992 DOI 10.17182/hepdata.104505

We present measurements of 2$^{nd}$ order azimuthal anisotropy ($v_{2}$) at mid-rapidity $(|y|<1.0)$ for light nuclei d, t, $^{3}$He (for $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and anti-nuclei $\bar{\rm d}$ ($\sqrt{s_{NN}}$ = 200, 62.4, 39, 27, and 19.6 GeV) and $^{3}\bar{\rm He}$ ($\sqrt{s_{NN}}$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The $v_{2}$ for these light nuclei produced in heavy-ion collisions is compared with those for p and $\bar{\rm p}$. We observe mass ordering in nuclei $v_{2}(p_{T})$ at low transverse momenta ($p_{T}<2.0$ GeV/$c$). We also find a centrality dependence of $v_{2}$ for d and $\bar{\rm d}$. The magnitude of $v_{2}$ for t and $^{3}$He agree within statistical errors. Light-nuclei $v_{2}$ are compared with predictions from a blast wave model. Atomic mass number ($A$) scaling of light-nuclei $v_{2}(p_{T})$ seems to hold for $p_{T}/A < 1.5$ GeV/$c$. Results on light-nuclei $v_{2}$ from a transport-plus-coalescence model are consistent with the experimental measurements.

19 data tables

Mid-rapidity v2(pT) for d,anti-d,t,He,anti-He from minimum bias (0-80%) Au+Au collisions 200 GeV (d data points are also shown in Fig 5).

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 62.4 GeV.

Mid-rapidity v2(pT) for d,anti-d,t,He from minimum bias (0-80%) Au+Au collisions 39 GeV.

More…

Beam Energy Dependence of Jet-Quenching Effects in Au+Au Collisions at $\sqrt{s_{_{ \mathrm{NN}}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Rev.Lett. 121 (2018) 032301, 2018.
Inspire Record 1609067 DOI 10.17182/hepdata.100537

We report measurements of the nuclear modification factor, $R_{ \mathrm{CP}}$, for charged hadrons as well as identified $\pi^{+(-)}$, $K^{+(-)}$, and $p(\overline{p})$ for Au+Au collision energies of $\sqrt{s_{_{ \mathrm{NN}}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-$p_{\mathrm{T}}$ net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ does depend on collision energy, neither the proton nor the anti-proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ exhibit net suppression at any energy. A study of how the binary collision scaled high-$p_{\mathrm{T}}$ yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.

118 data tables

Charged hadron RCP for RHIC BES energies. The uncertainty bands at unity on the right side of the plot correspond to the pT-independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy. The vertical uncertainty bars correspond to statistical uncertainties and the boxes to systematic uncertainties.

Identified particle (Pion Plus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.

Identified particle (Pion Minus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.

More…

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

31 data tables

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=7.7$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=11.5$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=19.6$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.

More…

Mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 534, 2020.
Inspire Record 1759853 DOI 10.17182/hepdata.88289

Anisotropies in the initial energy density distribution of the quark-gluon plasma created in high energy heavy ion collisions lead to anisotropies in the azimuthal distributions of the final-state particles known as collective flow. Fourier harmonic decomposition is used to quantify these anisotropies. The higher-order harmonics can be induced by the same order anisotropies (linear response) or by the combined influence of several lower order anisotropies (nonlinear response) in the initial state. The mixed higher-order anisotropic flow and nonlinear response coefficients of charged particles are measured as functions of transverse momentum and centrality in PbPb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_\mathrm{NN}} =$ 2.76 and 5.02 TeV with the CMS detector. The results are compared with viscous hydrodynamic calculations using several different initial conditions, as well as microscopic transport model calculations. None of the models provides a simultaneous description of the mixed higher-order flow harmonics and nonlinear response coefficients.

90 data tables

Mixed higher-order flow harmonic $v_4\{\Psi_{22}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_5\{\Psi_{23}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

Mixed higher-order flow harmonic $v_6\{\Psi_{222}\}$ from the scalar-product method at 5.02 TeV as a function of PT in the 0-20% centrality range.

More…

Collision Energy Dependence of Moments of Net-Kaon Multiplicity Distributions at RHIC

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Lett.B 785 (2018) 551-560, 2018.
Inspire Record 1621460 DOI 10.17182/hepdata.98573

Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can be used to search for the QCD critical point. We report the first measurements of the moments of net-kaon multiplicity distributions in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV. The collision centrality and energy dependence of the mean ($M$), variance ($\sigma^2$), skewness ($S$), and kurtosis ($\kappa$) for net-kaon multiplicity distributions as well as the ratio $\sigma^2/M$ and the products $S\sigma$ and $\kappa\sigma^2$ are presented. Comparisons are made with Poisson and negative binomial baseline calculations as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function of collision energy.

43 data tables

Raw $\Delta N_k$ distributions in Au+Au collisions at 7.7 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

Raw $\Delta N_k$ distributions in Au+Au collisions at 11.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

Raw $\Delta N_k$ distributions in Au+Au collisions at 14.5 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.

More…

Proton-Proton Interactions and Onset of Deconfinement

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Anticic, T. ; et al.
Phys.Rev.C 102 (2020) 011901, 2020.
Inspire Record 1772241 DOI 10.17182/hepdata.95182

The NA61/SHINE experiment at the CERN SPS is performing a uniqe study of the phase diagram of strongly interacting matter by varying collision energy and nuclear mass number of colliding nuclei. In central Pb+Pb collisions the NA49 experiment found structures in the energy dependence of several observables in the CERN SPS energy range that had been predicted for the transition to a deconfined phase. New measurements of NA61/SHINE find intriguing similarities in p+p interactions for which no deconfinement transition is expected at SPS energies. Possible implications will be discussed.

12 data tables

K+/PI+ at y=0.

K+/PI+ at y=0.

<K+>/<PI+>.

More…

Measurement of $\phi $ meson production in $p + p$ interactions at 40, 80 and $158 \, \hbox {GeV}/c$ with the NA61/SHINE spectrometer at the CERN SPS

The NA61/SHINE collaboration Aduszkiewicz, A. ; Andronov, E.V. ; Antićić, T. ; et al.
Eur.Phys.J.C 80 (2020) 199, 2020.
Inspire Record 1749613 DOI 10.17182/hepdata.93228

Results on $\phi$ meson production in inelastic p+p collisions at CERN SPS energies are presented. They are derived from data collected by the NA61/SHINE fixed target experiment, by means of invariant mass spectra fits in the $\phi \to K^+K^-$ decay channel. They include the first ever measured double differential spectra of $\phi$ mesons as a function of rapidity $y$ and transverse momentum $p_T$ for proton beam momenta of 80 GeV/c and 158 GeV/c, as well as single differential spectra of $y$ or $p_T$ for beam momentum of 40 GeV/c. The corresponding total $\phi$ yields per inelastic p+p event are obtained. These results are compared with existing data on $\phi$ meson production in p+p collisions. The comparison shows consistency but superior accuracy of the present measurements. The emission of $\phi$ mesons in p+p reactions is confronted with that occurring in Pb+Pb collisions, and the experimental results are compared with model predictions. It appears that none of the considered models can properly describe all the experimental observables.

17 data tables

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 158 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Double differential multiplicity of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 80 GeV/c, as a function of transverse momentum $p_T$ and rapidity $y$.

Transverse momentum $p_T$ spectrum of $\phi$ mesons produced in minimum bias p+p collisions at beam momentum of 40 GeV/c, in a broad rapidity $y$ bin of (0, 1.5).

More…

Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 79 (2019) 307, 2019.
Inspire Record 1706753 DOI 10.17182/hepdata.89268

The pseudorapidity density of charged particles, $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$, in p-Pb collisions has been measured at a centre-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, $|\eta|<1.8$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ value is $19.1\pm0.7$ at $|\eta|<0.5$. This quantity divided by $\langle N_\rm{part} \rangle/2$, is $4.73\pm0.20$, which is 9.5% higher than the corresponding value for p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ distribution. Saturation-based models reproduce the distributions well for $\eta>-1.3$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p-Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.

29 data tables

Pseudorapidity density of charged particles in p–Pb NSD collisions at a centre-of-mass energy of 8.16 TeV.

Values of average pseudorapidity density of charged particles in p–Pb NSD collisions as a function of the energy in the centre-of-mass.

Pseudorapidity density of charged particles in p–Pb NSD collisions at 8.16 TeV for 0-5% centrality class and CL1 estimator.

More…

Version 2
Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron

The NA61/SHINE collaboration Aduszkiewicz, A. ; Ali, Y. ; Andronov, E. ; et al.
Eur.Phys.J.C 76 (2016) 635, 2016.
Inspire Record 1395611 DOI 10.17182/hepdata.76900

Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. The results on multiplicity and transverse momentum fluctuations significantly deviate from expectations for the independent particle production. They also depend on charges of selected hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe the data. The scaled variance of multiplicity fluctuations is significantly higher in inelastic p+p interactions than in central Pb+Pb collisions measured by NA49 at the same energy per nucleon. This is in qualitative disagreement with the predictions of the Wounded Nucleon Model. Within the statistical framework the enhanced multiplicity fluctuations in inelastic p+p interactions can be interpreted as due to event-by-event fluctuations of the fireball energy and/or volume.

14 data tables

Energy dependence of $\Delta[P_{T},N]$ for three charge selections

Energy dependence of $\Delta[P_{T},N]$ for three charge selections

Energy dependence of $\Sigma[P_{T},N]$ for three chrge selections

More…

Energy dependence of forward-rapidity J/$\psi$ and $\psi(2S)$ production in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 392, 2017.
Inspire Record 1511865 DOI 10.17182/hepdata.77781

We present results on transverse momentum ($p_{\rm T}$) and rapidity ($y$) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/$\psi$ and $\psi(2S)$ at forward rapidity ($2.5<y<4$) as well as $\psi(2S)$-to-J/$\psi$ cross section ratios. These quantities are measured in pp collisions at center of mass energies $\sqrt{s}=5.02$ and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. A comprehensive comparison to inclusive charmonium cross sections measured at $\sqrt{s}=2.76$, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full $p_{\rm T}$ range, provided that both contributions are summed. In particular, it is found that for $p_{\rm T}>15$ GeV/$c$ the non-prompt contribution reaches up to 50% of the total charmonium yield.

14 data tables

Differential production cross sections of $J/\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of $J/\psi$ as a function of rapidity.

Differential production cross sections of $\psi(2S)$ as a function of $p_{\rm T}$.

More…