Preliminary Observation of Parity Nonconservation in Atomic Thallium

Conti, R. ; Bucksbaum, P. ; Chu, S. ; et al.
Phys.Rev.Lett. 42 (1979) 343-346, 1979.
Inspire Record 136903 DOI 10.17182/hepdata.20786

Parity nonconservation is observed in the 6P122−7P122 transition in thallium. Absorption of circularly polarized 293-nm photons by 6P122 atoms in an E field results in polarization of the 7P122 state through interference of Stark E1 amplitudes with M1 and parity-nonconserving E1 amplitudes M and Ep. Detection of this polarization yields the circular dichroism δ=+(5.2±2.4)×10−3, which agrees in sign and magnitude with theoretical estimates based on the Weinberg-Salam model.

1 data table

Used 99.999% pure thallium metal with natural isotopic abundances (29.5% Tl203, 70.5% Tl205). SIG(C+), SIG(C-) are the cross sections for absorption of 293-nm photons, with +,- helicity, respectively. Spin of the Tl nucleus is 1/2. Statistical errors only.


PARITY NONCONSERVATION IN ATOMIC THALLIUM

Drell, Persis S. ; Commins, E.D. ;
Phys.Rev.Lett. 53 (1984) 968-971, 1984.
Inspire Record 208341 DOI 10.17182/hepdata.20404

We present new measurements of parity conservation in the 293-nm transition in atomic Tl81205. Linearly polarized 293-nm photons, polarization ε^, are absorbed by 6P122 atoms in crossed electric and magnetic fields. The transition probability for each Zeeman component contains a term proportional to ε^·B→ε^·E→×B→ arising from interference between the Stark E1 amplitude βE and the parity-nonconserving E1 amplitude Ep. Our result, [ImEpβ]expt=−1.73±0.33 mV/cm, is compared with estimates based on the standard electroweak model.

1 data table

Spin of the Tl nucleus is 1/2.


Atomic Beam Measurement of Parity Nonconservation in Cesium

Gilbert, S.L. ; Wieman, Carl E. ;
Phys.Rev.A 34 (1986) 792-803, 1986.
Inspire Record 237319 DOI 10.17182/hepdata.26392

We present a new measurement of parity nonconservation in cesium. In this experiment, a laser excited the 6S→7S transition in an atomic beam in a region of static electric and magnetic fields. The quantity measured was the component of the transition rate arising from the interference between the parity nonconserving amplitude, scrEPNC, and the Stark amplitude, βE. Our results are ImscrEPNC/β=−1.65±0.13 mV/cm and C2p=-2±2, where C2p is the proton-axial-vector–electron-vector neutral-current coupling constant. These results are in agreement with previous less precise measurements in cesium and with the predictions of the electroweak standard model. We give a detailed discussion of the experiment with particular emphasis on the treatment and elimination of systematic errors. This experimental technique will allow future measurements of significantly higher precision.

3 data tables

Axis error includes +- 0.0/0.0 contribution (?////THE UNCERTAINTY IS DOMINATED BY THE PURELY STATISTICAL CONTRIBUTION).

Axis error includes +- 0.0/0.0 contribution (?////THE UNCERTAINTY IS DOMINATED BY THE PURELY STATISTICAL CONTRIBUTION).

Axis error includes +- 0.0/0.0 contribution (?////THE UNCERTAINTY IS DOMINATED BY THE PURELY STATISTICAL CONTRIBUTION).


NEW OBSERVATION OF A PARITY VIOLATION IN CESIUM

Bouchiat, M.A. ; Guena, J. ; Pottier, L. ; et al.
Phys.Lett.B 134 (1984) 463-468, 1984.
Inspire Record 200186 DOI 10.17182/hepdata.30610

The parity violation induced by weak neutral currents is measured in a ΔF =1 hyperfine component of the 6S–7S transition of the Cs atom. The measured value ( Im E PV 1 β ) = −1.78 ± 0.26 (statistical rms deviation) ±0.12 (systematic uncertainty) mV/cm, agrees with our previous measurement in a ΔF =0 component, and constitutes an important cross-check. Our result excludes a parity violation induced by a purely axial hadronic neutral current.

1 data table

(7s)2S1/2:F=3 --> (6s)2S1/2:F=4 transition.


Observation of a Parity Violation in Cesium

Bouchiat, M.A. ; Guena, J. ; Hunter, L. ; et al.
Phys.Lett.B 117 (1982) 358, 1982.
Inspire Record 180105 DOI 10.17182/hepdata.30837

We have measured a parity violation in the 6S–7S transition of Cs in an electric field. Our result is Im E 1 pv β = -1.34 ± 0.22 ( rms statistical deviation ) ± ∼0.11 ( systematic uncertainty ) mV cm; E 1 pv is the parity violating electric dipole amplitude, ß is the vector polarizability. This result is consistent with the Weinberg-Salam prediction.

1 data table

(7s)2S1/2:F=4 --> (6s)2S1/2:F=4 transition.


Search for Parity Nonconservation in Atomic Bismuth

Soreide, D.C. ; Roberts, D.E. ; Lindahl, E.G. ; et al.
Phys.Rev.Lett. 36 (1976) 352-355, 1976.
Inspire Record 112866 DOI 10.17182/hepdata.21089

In a search for optical rotation near the 8755-Å magnetic-dipole absorption line in atomic Bi, our first results set an upper limit F<10−6 on a parity nonconserving amplitude associated with the line. This limit improves upon earlier parity tests in atoms by three orders of magnitude. Further improvement of at least another order of magnitude appears possible by this method which should then provide an exacting test of parity conservation in the neutral weak-current interaction in atoms.

1 data table

No description provided.


PARITY NONCONSERVING OPTICAL ROTATION IN ATOMIC LEAD

Emmons, T.P. ; Reeves, J.M. ; Fortson, E.N. ;
Phys.Rev.Lett. 51 (1983) 2089-2092, 1983.
Inspire Record 200168 DOI 10.17182/hepdata.20506

The search for parity nonconservation in heavy elements has been extended to the 1.28-μm P03→P13 magnetic dipole transition in atomic lead. The experimental result, R=Im(E1M1)=(−9.9±2.5)×10−8, agrees, within the present uncertainties in experiment and atomic theory, with the prediction, R=−13×10−8, derived from the Weinberg-Salam-Glashow theory of weak neutral-current interactions.

2 data tables

No description provided.

WE SUM BOTH STATISTICAL AND SYSTEMATIC ERRORS TO OBTAIN A WEIGHTED AVERAGE OF ALL DATA GROUPS. QUOTED ERROR INCLUDES STATISTICAL AND SYSTEMATIC CONTRIBUTIONS.


Observations of Parity Nonconservation in Atomic Thallium

Bucksbaum, P.H. ; Commins, E.D. ; Hunter, L.R. ;
Phys.Rev.D 24 (1981) 1134-1148, 1981.
Inspire Record 166691 DOI 10.17182/hepdata.24054

A detailed account is given of observations of parity nonconservation in the 6P122−7P122 transition in Tl81203,205. Absorption of circularly polarized 293-nm photons by 6P122 atoms in an E field results in polarization of the 7P122 state through interference of the Stark E1 amplitude with M1 and parity-nonconserving E1 amplitudes. This polarization is detected by selective excitation of mF=±1 components of the 7P122 state to the 8S122 state and observation of the ensuing decay fluorescence at 323 nm. Systematic corrections due to imperfect circular polarization, misaligned E fields, and residual magnetic fields are determined precisely by a series of auxiliary experiments. The result is expressed in terms of the circular dichroism δexpt=+(2.8−0.9+1.0)×10−3, to be compared with estimates based on the Weinberg-Salam model for sin2θw=0.23:δtheo=+(2.1±0.7)×10−3.

1 data table

Used 99.999% pure thallium metal with natural isotopic abundances (29.5% Tl203, 70.5% Tl205). SIG(C=+),SIG(C=-) are the cross sections for absorption of 293-nm photons with +- helicity, respectively. Spin of the Tl nucleus is 1/2.


Upper limit on parity nonconserving optical rotation in atomic bismuth

Lewis, L.L. ; Hollister, J.H. ; Soreide, D.C. ; et al.
Phys.Rev.Lett. 39 (1977) 795-798, 1977.
Inspire Record 128258 DOI 10.17182/hepdata.20948

We have searched for optical rotation near the 8757-Å magnetic-dipole absorption line in atomic bismuth vapor. The experiment is sensitive to parity nonconservation in the weak neutral-current interaction between electrons and nucleons in atoms. We find R≡Im(E1M1)=(−0.7±3.2)×10−8, which is considerably smaller than the value R=−2.5×10−7 obtained by central-field calculations for this bismuth line using the Weinberg-Salam theory of neutral currents.

1 data table

No description provided.


Search for parity noncoserving optical rotation in atomic bismuth

Baird, P.E.G ; Brimicombe, S.M. ; Hunt, R.G. ; et al.
Phys.Rev.Lett. 39 (1977) 798-801, 1977.
Inspire Record 128257 DOI 10.17182/hepdata.20929

We report the results of a laser experiment to search for the parity-nonconserving optical rotation in atomic bismuth. We work at wavelengths close to the 648-nm J=32 — J=52 M1 transition from the ground state. We find R=Im(E1M1)=(+2.7±4.7)×10−8, in disagreement with the theoretical value R=−30×10−8 predicted for this transition on the basis of the Weinberg-Salam model of the weak interactions combined with relativistic central-field atomic theory.

1 data table

No description provided.