Jet fragmentation transverse momentum measurements from di-hadron correlations in $\sqrt{s}$ = 7 TeV pp and $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV p-Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
JHEP 03 (2019) 169, 2019.
Inspire Record 1704923 DOI 10.17182/hepdata.89304

The transverse structure of jets was studied via jet fragmentation transverse momentum ($j_{\rm{T}}$) distributions, obtained using two-particle correlations in proton-proton and proton-lead collisions, measured with the ALICE experiment at the LHC. The highest transverse momentum particle in each event is used as the trigger particle and the region $3 < p_{\rm{Tt}} < 15$ GeV/$c$ is explored in this study. The measured distributions show a clear narrow Gaussian component and a wide non-Gaussian one. Based on Pythia simulations, the narrow component can be related to non-perturbative hadronization and the wide component to quantum chromodynamical splitting. The width of the narrow component shows a weak dependence on the transverse momentum of the trigger particle, in agreement with the expectation of universality of the hadronization process. On the other hand, the width of the wide component shows a rising trend suggesting increased branching for higher transverse momentum. The results obtained in pp collisions at $\sqrt{s}$ = 7 TeV and in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV are compatible within uncertainties and hence no significant cold nuclear matter effects are observed. The results are compared to previous measurements from CCOR and PHENIX as well as to Pythia 8 and Herwig 7 simulations.

24 data tables

trigger particle momentum dependence of observables RMS for narrow component in p-p collisions at 7 TeV with 0.2<xlong<0.4.

trigger particle momentum dependence of observables RMS for narrow component in p-p collisions at 7 TeV with 0.4<xlong<0.6.

trigger particle momentum dependence of observables RMS for narrow component in p-p collisions at 7 TeV with 0.6<xlong<1.0.

More…

Measurement of ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${{\rm D^+_s}}$ production in pp collisions at $\mathbf{\sqrt{{\textit s}}~=~5.02~TeV}$ with ALICE

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Eur.Phys.J.C 79 (2019) 388, 2019.
Inspire Record 1716440 DOI 10.17182/hepdata.89326

The measurements of the production of prompt ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$, and ${{\rm D^+_s}}$ mesons in proton--proton (pp) collisions at $\sqrt{s}=5.02$ TeV with the ALICE detector at the Large Hadron Collider (LHC) are reported. D mesons were reconstructed at mid-rapidity ($|y|<0.5$) via their hadronic decay channels ${\rm D}^0 \to {\rm K}^-\pi^+$, ${\rm D}^+\to {\rm K}^-\pi^+\pi^+$, ${\rm D}^{*+} \to {\rm D}^0 \pi^+ \to {\rm K}^- \pi^+ \pi^+$, ${\rm D^{+}_{s}\to \phi\pi^+\to K^{+} K^{-} \pi^{+}}$, and their charge conjugates. The production cross sections were measured in the transverse momentum interval $0<p_{\rm T}<36~\mathrm{GeV}/c$ for ${\rm D^0}$, $1<p_{\rm T}<36~\mathrm{GeV}/c$ for ${\rm D^+}$ and ${\rm D^{*+}}$, and in $2<p_{\rm T}<24~\mathrm{GeV}/c$ for ${{\rm D^+_s}}$ mesons. Thanks to the higher integrated luminosity, an analysis in finer $p_{\rm T}$ bins with respect to the previous measurements at $\sqrt{s}=7$ TeV was performed, allowing for a more detailed description of the cross-section $p_{\rm T}$ shape. The measured $p_{\rm T}$-differential production cross sections are compared to the results at $\sqrt{s}=7$ TeV and to four different perturbative QCD calculations. Its rapidity dependence is also tested combining the ALICE and LHCb measurements in pp collisions at $\sqrt{s}=5.02$ TeV. This measurement will allow for a more accurate determination of the nuclear modification factor in p-Pb and Pb-Pb collisions performed at the same nucleon-nucleon centre-of-mass energy.

18 data tables

$p_{\rm T}$-differential cross section of prompt $\rm{D}^{0}$ mesons in pp collisions at $\sqrt{\rm{s_{NN}}}$=5.02 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{0}\rightarrow K\pi$ : 0.0389.

$p_{\rm T}$-differential cross section of prompt $\rm{D^{+}}$ mesons in pp collisions at $\sqrt{\rm{s_{NN}}}$=5.02 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm D^{+-}\rightarrow K{\rm{\pi}}{\rm{\pi}}$ : 0.0898.

$p_{\rm T}$-differential cross section of prompt $\rm D^{*}$ mesons in pp collisions at $\sqrt{\rm{s_{NN}}}$=5.02 TeV in the rapidity interval $|y|$<0.5. Branching ratio of $\rm{D}^{*+}\rightarrow \rm{D}^{0}\pi\rightarrow K\pi\pi$ : 0.02633.

More…

Charged-particle pseudorapidity density at mid-rapidity in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 79 (2019) 307, 2019.
Inspire Record 1706753 DOI 10.17182/hepdata.89268

The pseudorapidity density of charged particles, $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$, in p-Pb collisions has been measured at a centre-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 8.16 TeV at mid-pseudorapidity for non-single-diffractive events. The results cover 3.6 units of pseudorapidity, $|\eta|<1.8$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ value is $19.1\pm0.7$ at $|\eta|<0.5$. This quantity divided by $\langle N_\rm{part} \rangle/2$, is $4.73\pm0.20$, which is 9.5% higher than the corresponding value for p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV. Measurements are compared with models based on different mechanisms for particle production. All models agree within uncertainties with data in the Pb-going side, while HIJING overestimates, showing a symmetric behaviour, and EPOS underestimates the p-going side of the $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ distribution. Saturation-based models reproduce the distributions well for $\eta>-1.3$. The $\rm{d}\it{N}_\rm{ch}/\rm{d}\it{\eta}$ is also measured for different centrality estimators, based both on the charged-particle multiplicity and on the energy deposited in the Zero-Degree Calorimeters. A study of the implications of the large multiplicity fluctuations due to the small number of participants for systems like p-Pb in the centrality calculation for multiplicity-based estimators is discussed, demonstrating the advantages of determining the centrality with energy deposited near beam rapidity.

29 data tables

Pseudorapidity density of charged particles in p–Pb NSD collisions at a centre-of-mass energy of 8.16 TeV.

Values of average pseudorapidity density of charged particles in p–Pb NSD collisions as a function of the energy in the centre-of-mass.

Pseudorapidity density of charged particles in p–Pb NSD collisions at 8.16 TeV for 0-5% centrality class and CL1 estimator.

More…