Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 850 (2024) 138541, 2024.
Inspire Record 2692420 DOI 10.17182/hepdata.147284

The first measurements of skewness and kurtosis of mean transverse momentum ($\langle p_\mathrm{T}\rangle$) fluctuations are reported in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, Xe$-$Xe collisions at $\sqrt{s_\mathrm{NN}}$$=$ 5.44 TeV and pp collisions at $\sqrt{s} = 5.02$ TeV using the ALICE detector. The measurements are carried out as a function of system size $\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle_{|\eta|<0.5}^{1/3}$, using charged particles with transverse momentum ($p_\mathrm{T}$) and pseudorapidity ($\eta$), in the range $0.2 < p_\mathrm{T} < 3.0$ GeV/$c$ and $|\eta| < 0.8$, respectively. In Pb$-$Pb and Xe$-$Xe collisions, positive skewness is observed in the fluctuations of $\langle p_\mathrm{T}\rangle$ for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of $\langle p_\mathrm{T}\rangle$ fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb$-$Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb--Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions.

9 data tables

Standardized skewness of $\langle p_\mathrm{T}\rangle$ as a function of $\langle\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle^{1/3}_{|\eta|<0.5}$ in pp collisions at $\sqrt{s}$ = 5.02 TeV.

Standardized skewness of $\langle p_\mathrm{T}\rangle$ as a function of $\langle\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle^{1/3}_{|\eta|<0.5}$ in Xe$-$Xe collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

Standardized skewness of $\langle p_\mathrm{T}\rangle$ as a function of $\langle\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle^{1/3}_{|\eta|<0.5}$ in Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV.

More…

Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

10 data tables

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

More…

First measurement of the $|t|$-dependence of incoherent J/$\psi$ photonuclear production

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 132 (2024) 162302, 2024.
Inspire Record 2658375 DOI 10.17182/hepdata.146880

The first measurement of the cross section for incoherent photonuclear production of J/$\psi$ vector meson as a function of the Mandelstam $|t|$ variable is presented. The measurement was carried out with the ALICE detector at midrapidity, $|y|<0.8$, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. This rapidity interval corresponds to a Bjorken-$x$ range $(0.3$$-$$1.4)\times 10^{-3}$. Cross sections are reported in five $|t|$ intervals in the range $0.04<|t|<1$~GeV$^2$ and compared to the predictions of different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a $|t|$-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.

1 data table

|t|-dependence of incoherent J/Psi photonuclear production cross section in Pb-Pb UPCs measured at midrapidity, |y| < 0.8


Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at $\sqrt{s}= 7$ and 8 TeV

The ATLAS & CMS collaborations Aad, G. ; Abbott, B. ; Abbott, D.C. ; et al.
JHEP 07 (2023) 213, 2023.
Inspire Record 2088291 DOI 10.17182/hepdata.110250

A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.

2 data tables

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.

Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.


Trends in Yield and Azimuthal Shape Modification in Dihadron Correlations in Relativistic Heavy Ion Collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 104 (2010) 252301, 2010.
Inspire Record 845169 DOI 10.17182/hepdata.146557

Fast parton probes produced by hard scattering and embedded within collisions of large nuclei have shown that partons suffer large energy loss and that the produced medium may respond collectively to the lost energy. We present measurements of neutral pion trigger particles at transverse momenta p^t_T = 4-12 GeV/c and associated charged hadrons (p^a_T = 0.5-7 GeV/c) as a function of relative azimuthal angle Delta Phi at midrapidity in Au+Au and p+p collisions at sqrt(s_NN) = 200 GeV. These data lead to two major observations. First, the relative angular distribution of low momentum hadrons, whose shape modification has been interpreted as a medium response to parton energy loss, is found to be modified only for p^t_T &lt; 7 GeV/c. At higher p^t_T, the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p^a_T. This observation presents a quantitative challenge to medium response scenarios. Second, the associated yield of hadrons opposite to the trigger particle in Au+Au relative to that in p+p (I_AA) is found to be suppressed at large momentum (IAA ~ 0.35-0.5), but less than the single particle nuclear modification factor (R_AA ~0.2).

16 data tables

Average away-side $I^{head}_{AA}$ above 2 GeV/$c$ for various $\pi^0$ trigger momenta in central and midcentral collisions where $|\Delta\phi - \pi| < \pi/6$. Note: a 6% scale uncertainty applies to all $I_{AA}$ values.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in $p+p$ collisions.

Away-side jet widths from a Gaussian fit by $h^{\pm}$ partner momentum for various $\pi^0$ trigger momenta in Au+Au collisions.

More…

Differential measurements of jet substructure and partonic energy loss in Au+Au collisions at $\sqrt {S_{NN}}$ =200 GeV

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 105 (2022) 044906, 2022.
Inspire Record 1925052 DOI 10.17182/hepdata.113875

The STAR collaboration presents jet substructure measurements related to both the momentum fraction and the opening angle within jets in \pp and \AuAu collisions at \sqrtsn $= 200$ GeV. The substructure observables include SoftDrop groomed momentum fraction (\zg), groomed jet radius (\rg), and subjet momentum fraction (\zsj) and opening angle (\tsj). The latter observable is introduced for the first time. Fully corrected subjet measurements are presented for \pp collisions and are compared to leading order Monte Carlo models. The subjet \tsj~distributions reflect the jets leading opening angle and are utilized as a proxy for the resolution scale of the medium in \AuAu collisions. We compare data from \AuAu collisions to those from \pp which are embedded in minimum-bias \AuAu events in order to include the effects of detector smearing and the heavy-ion collision underlying event. The subjet observables are shown to be more robust to the background than \zg~and \rg. We observe no significant modifications of the subjet observables within the two highest-energy, back-to-back jets, resulting in a distribution of opening angles and the splittings that are vacuum-like. We also report measurements of the differential di-jet momentum imbalance ($A_{\rm{J}}$) for jets of varying \tsj. We find no qualitative differences in energy loss signatures for varying angular scales in the range $0.1 < $\tsj $ < 0.3$, leading to the possible interpretation that energy loss in this population of high momentum di-jet pairs, is due to soft medium-induced gluon radiation from a single color-charge as it traverses the medium.

54 data tables

$z_{g}$ for HardCore Trigger jets in AuAu Data anti-kT R$=$0.4

$z_{g}$ for HardCore Trigger jets in pp$+$AuAu Data anti-kT R$=$0.4

$z_{g}$ for Matched Trigger jets in AuAu Data anti-kT R$=$0.4

More…

Pseudorapidity dependence of anisotropic flow and its decorrelations using long-range multiparticle correlations in Pb-Pb and Xe-Xe collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 850 (2024) 138477, 2024.
Inspire Record 2679248 DOI 10.17182/hepdata.146722

The pseudorapidity dependence of elliptic ($v_2$), triangular ($v_3$), and quadrangular ($v_4$) flow coefficients of charged particles measured in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV and in Xe-Xe collisions at $\sqrt{s_{\rm NN}}=5.44$ TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range $-3.5 < \eta < 5$ for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient $v_2$ calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to $3+1$ dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement.

15 data tables

$v_{2}\{2\}$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{s_{\mathrm{NN}}}=5.023\,\mathrm{Te\!V}$

$v_{3}\{2\}$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{s_{\mathrm{NN}}}=5.023\,\mathrm{Te\!V}$

$v_{4}\{2\}$ versus $\eta$ for $x^{\pm}$ in $\mathrm{Pb}-\mathrm{Pb}$ at $\sqrt{s_{\mathrm{NN}}}=5.023\,\mathrm{Te\!V}$

More…

Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s}=13$ TeV with event-shape selection

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 024915, 2024.
Inspire Record 2709104 DOI 10.17182/hepdata.146805

Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE collaboration on charged pion and kaon pairs produced in pp collisions at $\sqrt{s}=13$ TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied.

74 data tables
More…

Measurements of the suppression and correlations of dijets in Pb+Pb collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.C 107 (2023) 054908, 2023.
Inspire Record 2075431 DOI 10.17182/hepdata.145875

Studies of the correlations of the two highest transverse momentum (leading) jets in individual Pb+Pb collision events can provide information about the mechanism of jet quenching by the hot and dense matter created in such collisions. In Pb+Pb and pp collisions at $\sqrt{s_{_\text{NN}}}$ = 5.02 TeV, measurements of the leading dijet transverse momentum ($p_{\mathrm{T}}$) correlations are presented. Additionally, measurements in Pb+Pb collisions of the dijet pair nuclear modification factors projected along leading and subleading jet $p_{\mathrm{T}}$ are made. The measurements are performed using the ATLAS detector at the LHC with 260 pb$^{-1}$ of pp data collected in 2017 and 2.2 nb$^{-1}$ of Pb+Pb data collected in 2015 and 2018. An unfolding procedure is applied to the two-dimensional leading and subleading jet $p_{\mathrm{T}}$ distributions to account for experimental effects in the measurement of both jets. Results are provided for dijets with leading jet $p_{\mathrm{T}}$ greater than 100 GeV. Measurements of the dijet-yield-normalized $x_{\mathrm{J}}$ distributions in Pb+Pb collisions show an increased fraction of imbalanced jets compared to pp collisions; these measurements are in agreement with previous measurements of the same quantity at 2.76 TeV in the overlapping kinematic range. Measurements of the absolutely-normalized dijet rate in Pb+Pb and pp collisions are also presented, and show that balanced dijets are significantly more suppressed than imbalanced dijets in Pb+Pb collisions. It is observed in the measurements of the pair nuclear modification factors that the subleading jets are significantly suppressed relative to leading jets with $p_{\mathrm{T}}$ between 100 and 316 GeV for all centralities in Pb+Pb collisions.

23 data tables

absolutely normalized dijet cross sections from pp collisions

absolutely normalized dijet yields scaled by 1/<TAA> in 0-10% central PbPb collisions

absolutely normalized dijet yields scaled by 1/<TAA> in 10-20% central PbPb collisions

More…

Collision-system and beam-energy dependence of anisotropic flow fluctuations

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.Lett. 129 (2022) 252301, 2022.
Inspire Record 2017211 DOI 10.17182/hepdata.116554

Elliptic flow measurements from two-, four- and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at $\sqrt{s_{\rm NN}}$= 193 GeV, Cu+Au at $\sqrt{s_{\rm NN}}$= 200 GeV and Au+Au spanning the range $\sqrt{s_{\rm NN}}$= 11.5 - 200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy. The results, when compared to similar LHC measurements, viscous hydrodynamic calculations, and T$\mathrel{\protect\raisebox{-2.1pt}{R}}$ENTo model eccentricities, indicate that initial-state-driven fluctuations predominate the flow fluctuations generated in the collisions studied.

11 data tables

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the $\pi$ particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the K particle.

The Au+Au 200 GeV measurements of the two and four-particle elliptic flow and the elliptic flow fluctuations of the p particle.

More…