$ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross-section measurements and search for anomalous triple gauge couplings in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032005, 2018.
Inspire Record 1625109 DOI 10.17182/hepdata.82224

Measurements of $ZZ$ production in the $\ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 $\mathrm{fb}^{-1}$ of collisions collected by the ATLAS experiment in 2015 and 2016. Here $\ell$ and $\ell'$ stand for electrons or muons. Integrated and differential $ZZ \to \ell^{+}\ell^{-}\ell^{\prime +}\ell^{\prime -}$ cross sections with $Z \to \ell^+\ell^-$ candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all Standard-Model decays of $Z$ bosons with mass between 66 GeV and 116 GeV, resulting in a value of $17.3 \pm 0.9$ [$\pm 0.6$ (stat.) $\pm 0.5$ (syst.) $\pm 0.6$ (lumi.)] pb. The measurements are found to be in good agreement with the Standard-Model predictions. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading $Z$-boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

121 data tables

Integrated fiducial cross sections. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Differential fiducial cross section as function of the transverse momentum of the four-lepton system. Fiducial phase space - At least 4 electrons, 4 muons, or 2 electrons and 2 muons forming two same-flavour opposite-charge dileptons (Z candidates) - Lepton pairing ambiguities are resolved by choosing the combination that results in the smaller value of the sum of |mll - mZ| for the two pairs, where mll is the mass of the dilepton system and mZ the Z boson pole mass - Lepton absolute pseudorapidity |eta| < 2.7 - Lepton transverse momentum pT > 5 GeV - The three leading-pT leptons satisfy pT > 20 GeV, 15 GeV, 10 GeV - Angular separation of any same-flavour (opposite-flavour) leptons DeltaR > 0.1 (0.2) - Both chosen dileptons have invariant mass between 66 GeV and 116 GeV - All possible same-flavour opposite-charge dileptons have mass > 5 GeV Details about the fiducial definition as well as all other aspects of the analysis can be found in the journal publication.

Predicted background as function of the transverse momentum of the four-lepton system.

More…

Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 092006, 2018.
Inspire Record 1654357 DOI 10.17182/hepdata.81626

A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 fb and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.

45 data tables

Distribution of the total visible transverse energy $H_{\mathrm{T}}$ for selected diphoton events, after requiring $\Delta\phi_{\mathrm{min}} (\mathrm{jet}, E_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$ but before application of a requirement on $E_{\mathrm{T}}^{\mathrm{miss}}$ and $\Delta\phi_{\mathrm{min}} (\gamma, E_{\mathrm{T}}^{\mathrm{miss}})$ ($\gamma\gamma$ pre-selection). Also shown are the expected $H_{\mathrm{T}}$ distributions of contributing SM processes as well as those for two points each in the parameter spaces of the gluino-bino and wino-bino GGM models (mass values in GeV). Events outside the range of the displayed region are included in the highest-value bin.

Distribution of $R_{\mathrm{T}}^{4}$ for the sample satisfying all $\mathrm{SR}^{\gamma j}_{L}$ selection criteria except the $R_{\mathrm{T}}^{4}$ requirement itself, but with a relaxed requirement of $E_{\mathrm{T}}^{\mathrm{miss}} > 100$ GeV. Also shown are the expected $R_{\mathrm{T}}^{4}$ distributions of contributing SM processes as well as those for two points in the $m_{\tilde{g}}$-$m_{\tilde{\chi}^{0}_{1}}$ parameter space of the GGM model relevant to the photon+jets analysis (mass values in GeV). The value of the gluino mass arises from the choice $M_3 = 1900$ GeV, while the values of the $\tilde{\chi}^{0}_{1}$ mass arise from the choices $\mu = 400$ and $\mu = 600$ GeV, combined with the constraint that the branching fraction of $\tilde{\chi}^{0}_{1} \to \gamma\tilde{G}$ be 50%. The vertical dashed line and left-pointing arrow shows the region of the $R_{\mathrm{T}}^{4}$ observable selected for inclusion in $\mathrm{SR}^{\gamma j}_{L}$. Uncertainties are shown as hatched bands for the various expected sources of SM background (statistical only) and as error bars for data. The lower panels show the ratio of the data to the SM prediction.

Comparisons between expected and observed content of the validation and signal regions for the diphoton analysis. The uncertainties in the numbers of expected events are the combined statistical and systematic uncertainties. The lower panel shows the pull (difference between observed and expected event counts normalized by the uncertainty) for each region.

More…

Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 126, 2018.
Inspire Record 1635274 DOI 10.17182/hepdata.80608

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton--proton collision data corresponding to an integrated luminosity of 36.1 fb${}^{-1}$ at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons ($e$ or $\mu$). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.

33 data tables

The measured leading jet $p_{T}$ distribution in the W($\rightarrow \mu \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

The measured $E_{T}^{miss}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

The measured leading jet $p_{T}$ distribution in the W($\rightarrow e \nu$)+jets control region, for the $E_{T}^{miss}$ > 250GeV inclusive selection, compared to the background predictions. The latter include the global normalization factors extracted from the fit. The last bin of the distribution contains overflows.

More…

Version 2
Measurements of top-quark pair differential cross-sections in the lepton+jets channel in $pp$ collisions at $\sqrt{s}$=13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 11 (2017) 191, 2017.
Inspire Record 1614149 DOI 10.17182/hepdata.80041

Measurements of differential cross-sections of top-quark pair production in fiducial phase-spaces are presented as a function of top-quark and $t\bar{t}$ system kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$=13 TeV. The data set corresponds to an integrated luminosity of $3.2$ fb${}^{-1}$, recorded in 2015 with the ATLAS detector at the CERN Large Hadron Collider. Events with exactly one electron or muon and at least two jets in the final state are used for the measurement. Two separate selections are applied that each focus on different top-quark momentum regions, referred to as resolved and boosted topologies of the $t\bar{t}$ final state. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations by means of calculated $\chi^2$ and $p$-values.

56 data tables

Covariance matrix of the absolute cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

Covariance matrix of the absolute cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

Covariance matrix of the relative cross-section as function of the top quark pT, accounting for the statistical and systematic uncertainties in the resolved topology.

More…

Version 7
Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2017) 085, 2017.
Inspire Record 1623207 DOI 10.17182/hepdata.79538

A search for pair production of a scalar partner of the top quark in events with four or more jets plus missing transverse momentum is presented. An analysis of 36.1 fb$^{-1}$ of $\sqrt{s}$=13 TeV proton-proton collisions collected using the ATLAS detector at the LHC yields no significant excess over the expected Standard Model background. To interpret the results a simplified supersymmetric model is used where the top squark is assumed to decay via $\tilde{t}_1 \rightarrow t^{(*)} \tilde\chi^0_1$ and $\tilde{t}_1\rightarrow b\tilde\chi^\pm_1 \rightarrow b W^{(*)} \tilde\chi^0_1$, where $\tilde\chi^0_1$ ($\chi^\pm_1$) denotes the lightest neutralino (chargino). Exclusion limits are placed in terms of the top-squark and neutralino masses. Assuming a branching ratio of 100% to $t \tilde\chi^0_1$, top-squark masses in the range 450-950 GeV are excluded for $\tilde\chi^0_1$ masses below 160 GeV. In the case where $m_{\tilde{t}_1}\sim m_t+m_{\tilde\chi^0_1}$, top-squark masses in the range 235-590 GeV are excluded.

581 data tables

Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.

Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.

Distribution of $E_\text{T}^\text{miss}$ for SRA-TT after the likelihood fit. The stacked histograms show the SM expectation and the hatched uncertainty band around the SM expectation shows the MC statistical and detector-related systematic uncertainties. A representative signal point is shown for each distribution.

More…

Searches for the $Z\gamma$ decay mode of the Higgs boson and for new high-mass resonances in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 10 (2017) 112, 2017.
Inspire Record 1613896 DOI 10.17182/hepdata.78906

This article presents searches for the $Z\gamma$ decay of the Higgs boson and for narrow high-mass resonances decaying to $Z\gamma$, exploiting $Z$ boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected - assuming Standard Model $pp\to H\to Z\gamma$ production and decay) upper limit on the production cross section times the branching ratio for $pp\to H\to Z\gamma$ is 6.6 (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level.

3 data tables

The measured sigma(pp-->X)xB(X->Z gamma) limit with the hypothesis of spin-0 resonance.

The measured sigma(pp-->X)xB(X->Z gamma) limit with the hypothesis of spin-2 resonance via gluon-gluon initial states.

The measured sigma(pp-->X)xB(X->Z gamma) limit with the hypothesis of spin-0 resonance via qqbar initial states.


Search for heavy resonances decaying into $WW$ in the $e\nu\mu\nu$ final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 24, 2018.
Inspire Record 1628411 DOI 10.17182/hepdata.79407

A search for neutral heavy resonances is performed in the $WW\to e\nu\mu\nu$ decay channel using $pp$ collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark--antiquark annihilation or gluon--gluon fusion process, upper limits on $\sigma_X \times B(X \to WW)$ as a function of the resonance mass are obtained in the mass range between 200 GeV and up to 5 TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi--Machacek model and a heavy tensor particle coupling only to gauge bosons.

6 data tables

Figure 1, left, subfigure a, Acceptance times efficiency as a function of signal mass for the ggF or qqA production. The "0" efficiency mass point means there's no such signal sample for the corresponding model.

Figure 2, left, subfigure a, Transverse mass distribution in the ggF top-quark control regions. For NWA signals, the "0" value means lack of statistics.

Figure 2, right, subfigure b, Transverse mass distribution in the VBF top-quark control regions. For NWA signals, the "0" value means lack of statistics.

More…

Measurement of the exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ process in proton--proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 777 (2018) 303-323, 2018.
Inspire Record 1615866 DOI 10.17182/hepdata.79947

The production of exclusive $\gamma \gamma \rightarrow \mu^+ \mu^-$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC, using data corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The measurement is performed for a dimuon invariant mass of 12 GeV $<m_{\mu^+\mu^-}<$ 70 GeV. The integrated cross-section is determined within a fiducial acceptance region of the ATLAS detector and differential cross-sections are measured as a function of the dimuon invariant mass. The results are compared to theoretical predictions that include corrections for absorptive effects.

0 data tables

Version 2
Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 96 (2017) 112010, 2017.
Inspire Record 1620206 DOI 10.17182/hepdata.78218

The results of a search for squarks and gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton--proton collision data at a center-of-mass energy of $\sqrt{s}$ = 13 TeV are presented. The dataset used was recorded during 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 $fb^{-1}$. No significant excess beyond the expected background is found. Exclusion limits at 95% confidence level are set in a number of supersymmetric scenarios, reaching masses up to 2.1 TeV for gluino pair production and up to 1.25 TeV for squark pair production.

142 data tables

Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.

Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.

Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model.

More…

Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $Z$ boson in $pp$ collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 776 (2018) 318-337, 2018.
Inspire Record 1620909 DOI 10.17182/hepdata.80461

A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying $Z$ boson in proton--proton collisions at $\sqrt{s} =$ 13 TeV is presented. This search uses 36.1 fb$^{-1}$ of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model $ZH$ production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass $m_H = $ 125 GeV. The corresponding limits on the production cross-section of the $ZH$ process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models.

13 data tables

Observed E<sub>T</sub><sup>miss</sup> distribution in the ee channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH &rarr; &#8467;&#8467; + inv signal distribution is shown with BR<sub>H &rarr; inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>&chi;</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.

Observed E<sub>T</sub><sup>miss</sup> distribution in the &mu;&mu; channel compared to the signal and background predictions. The error band shows the total statistical and systematic uncertainty on the background prediction. The background predictions are presented as they are before being fit to the data. The ratio plot gives the observed data yield over the background prediction (black points) as well as the signal-plus-background contribution divided by the background prediction (blue or purple line) in each E<sub>T</sub><sup>miss</sup> bin. The rightmost bin contains the overflow contributions. The ZH &rarr; &#8467;&#8467; + inv signal distribution is shown with BR<sub>H &rarr; inv</sub> =0.3, which is the value most compatible with data. The simulated DM distribution with m<sub>med</sub> = 500 GeV and m<sub>&chi;</sub> = 100 GeV is also scaled (with a factor of 0.27) to the best-fit contribution.

DM exclusion limit in the two-dimensional phase space of WIMP mass m<sub>&chi;</sub> vs mediator mass m<sub>med</sub> determined using the combined ee+&mu;&mu; channel. Both the observed and expected limits are presented, and the 1&sigma; uncertainty band for the expected limits is also provided. Regions bounded by the limit curves are excluded at the 95% CL. The grey line labelled with "m<sub>med</sub> = 2m<sub>&chi;</sub>'' indicates the kinematic threshold where the mediator can decay on-shell into WIMPs, and the other grey line gives the perturbative limit (arXiv 1603.04156). The relic density line (arXiv 1603.04156) illustrates the combination of m<sub>&chi;</sub> and m<sub>med</sub> that would explain the observed DM relic density.

More…