Measurement of Proton Electromagnetic Form Factors at High Momentum Transfers

Chen, K.W. ; Dunning, J.R. ; Cone, A.A. ; et al.
Phys.Rev. 141 (1966) 1267-1285, 1966.
Inspire Record 50783 DOI 10.17182/hepdata.26655

Elastic electron-proton scattering cross sections have been measured using the internal beam of the 6-BeV Cambridge Electron Accelerator at laboratory scattering angles between 31° and 90° for values of the four-momentum transfer squared ranging from q2=0.389 to 6.81 (BeV/c)2 (q2=10 to 175F−2). Incident electron energies ranged from 1.0 to 6.0 BeV. Scattered electrons from an internal liquid-hydrogen target were momentum-analyzed using a single quadrupole spectrometer capable of momentum analysis up to 3.0 BeV/c. Čerenkov and shower counters were used to help reject pion and low-energy background. The cross sections presented are absolute cross sections with experimental errors ranging from 6.8% to 20%. Separation of proton electromagnetic form factors have been made for all but the two highest momentum transfer points, using the Rosenbluth formula. Both form factors, GEp and GMp, were observed to continue to decrease as the momentum transfer increases. An upper limit to the possible asymptotic values of the proton electromagnetic form factors has been established.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Electron-Deuteron Scattering

Grossetete, B. ; Drickey, D. ; Lehmann, P. ;
Phys.Rev. 141 (1966) 1425-1434, 1966.
Inspire Record 944959 DOI 10.17182/hepdata.26656

We present results on elastic electron-deuteron experiments performed at Orsay. The range of momentum transfers is 0.6 to 2 F−2. Two kinds of measurements have been taken detecting the scattered electron: one with a solid CD2 target, the other with a liquid target. The data are analyzed with the nonrelativistic theory, which gives slightly positive neutron form factors and a magnetic neutron form factor nearly equal to the magnetic proton form factor.

3 data tables

No description provided.

No description provided.

No description provided.


Electron-Proton Scattering at High-Momentum Transfer

Berkelman, K. ; Feldman, M. ; Littauer, R.M. ; et al.
Phys.Rev. 130 (1963) 2061-2068, 1963.
Inspire Record 46839 DOI 10.17182/hepdata.26788

The elastic electron-proton scattering cross section has been measured at laboratory angles between 90° and 144° and for values of the four-momentum transfer squared between 25 and 45 F−2 (incident electron laboratory energies from 830 to 1360 MeV). Both the scattered electrons and the recoil protons were momentum analyzed and counted in coincidence, making possible background-free measurements down to cross sections of the order of 10−35 cm2/sr. The data are consistent with the Rosenbluth formula, and the resulting form factors tie on well with previous measurements at lower momentum transfer, continuing the established trend.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic Electron-Proton Scattering at Momentum Transfers up to 110 Fermi$^−^2$

Behrend, H.J. ; Brasse, F.W. ; Engler, J. ; et al.
Nuovo Cim.A 48 (1967) 140-164, 1967.
Inspire Record 1185336 DOI 10.17182/hepdata.1060

Using the internal beam of DESY elastic electron-proton cross-sections were measured at various angles between 32° and 130°, and with momentum transfers ofq 2=39, 60, 80 and 110 fm−2. Two single-quadrupole spectrometers, movable around a common liquid-hydrogen target, were used for analysing the momentum of the scattered electrons. Čerenkov and shower counters discriminated against pion and low-energy background. As a cross-section reference, recoil protons from elastic scattering atq 2=10 fm−2 were used, with a quantameter serving as an intermediate monitor. The data are consistent with the Rosenbluth formula, giving real form factorsG E andG M . Both continue to decrease with increasing momentum transfer, but somewhat faster than indicated by measurements performed so far.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic scattering, pion production, and annihilation into pions in antiproton-proton interactions at 5.7 GeV/c

Böckmann, K. ; Nellen, B. ; Paul, E. ; et al.
Nuovo Cim.A 42 (1966) 954-996, 1966.
Inspire Record 1185317 DOI 10.17182/hepdata.1061

An extensive investigation of antiproton-proton interactions at 5.7 GeV/c without strange-particle production was carried out using a hydrogen bubble chamber. Cross-sections for different channels are given and discussed. The reliability of the analysis was checked using artificially generated events. The cross-sections for elastic scattering, for all processes involving annihilation, and for all other inelastic processes are respectively σel=(16.3±0.6)mb,σannlbil=(22.5±2.0)mb, σinel=(24.8±2.0)mb. TheN * 1:38 is present both in the single and multiple pion production channels. For the reaction MediaObjects/11539_2007_Article_BF02720569_f1.jpg a cross-section of (1.05±0.21) mb was obtained. Cross-sections forN * 1238 production in other channels are also given. Some indication of the presence ofI=1/2 isobars was found in the nucleon-pion and the nucleon-two-pion systems. The inelastic nonannihilation reactions were found to be strongly peripheral. The one-pion exchange model including either a form factor or corrections for absorption was applied to the reaction MediaObjects/11539_2007_Article_BF02720569_f2.jpg . Neither version of the model could correctly account for all features of the reaction. The average number of pions in the annihilation was found to be 7.3±0.6. The presence of an asymmetry in the angular distribution of the charged pions was confirmed at this energy; it is due mostly to high-energy pions. The production of ρ and ω mesons was observed in various annihilation channels. Rates of up to 80% for ρ production and up to 15% for ω production were obtained by fitting phase-space and Breit-Wigner curves to the effective-mass distributions of different channels.

5 data tables

No description provided.

More…

Electromagnetic Properties of the Proton and Neutron

Olson, D.N. ; Schopper, H.F. ; Wilson, R.R. ;
Phys.Rev.Lett. 6 (1961) 286-290, 1961.
Inspire Record 944908 DOI 10.17182/hepdata.20172

None

3 data tables

No description provided.

No description provided.

No description provided.


Scattering of Bev Electrons by Hydrogen and Deuterium

Littauer, R.M. ; Schopper, H.F. ; Wilson, R.R. ;
Phys.Rev.Lett. 7 (1961) 141-143, 1961.
Inspire Record 47833 DOI 10.17182/hepdata.19791

None

6 data tables

No description provided.

No description provided.

No description provided.

More…