Version 2
Global $\Lambda$ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Nature 548 (2017) 62-65, 2017.
Inspire Record 1510474 DOI 10.17182/hepdata.77494

The extreme temperatures and energy densities generated by ultra-relativistic collisions between heavy nuclei produce a state of matter with surprising fluid properties. Non-central collisions have angular momentum on the order of 1000$\hbar$, and the resulting fluid may have a strong vortical structure that must be understood to properly describe the fluid. It is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have so far been found. Here we present the first measurement of an alignment between the angular momentum of a non-central collision and the spin of emitted particles, revealing that the fluid produced in heavy ion collisions is by far the most vortical system ever observed. We find that $\Lambda$ and $\overline{\Lambda}$ hyperons show a positive polarization of the order of a few percent, consistent with some hydrodynamic predictions. A previous measurement that reported a null result at higher collision energies is seen to be consistent with the trend of our new observations, though with larger statistical uncertainties. These data provide the first experimental access to the vortical structure of the "perfect fluid" created in a heavy ion collision. They should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the Strong Force. Our results extend the recent discovery of hydrodynamic spin alignment to the subatomic realm.

2 data tables

Lambda and AntiLambda polarization as a function of collision energy. A 0.8% error on the alpha value used in the paper is corrected in this table. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.

Lambda and AntiLambda polarization as a function of collision energy calculated using the new $\alpha_\Lambda=0.732$ updated on PDG2020. Systematic error bars include those associated with particle identification (negligible), uncertainty in the value of the hyperon decay parameter (2%) and reaction plane resolution (2%) and detector efficiency corrections (4%). The dominant systematic error comes from statistical fluctuations of the estimated combinatoric background under the (anti-)$\Lambda$ mass peak.


Version 2
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 704 (2011) 467-473, 2011.
Inspire Record 914546 DOI 10.17182/hepdata.102406

We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.

14 data tables

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 70-80% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 70-80% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 30-40% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

More…

First observation of the directed flow of $D^{0}$ and $\overline{D^0}$ in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 123 (2019) 162301, 2019.
Inspire Record 1733225 DOI 10.17182/hepdata.105914

We report the first measurement of rapidity-odd directed flow ($v_{1}$) for $D^{0}$ and $\overline{D^{0}}$ mesons at mid-rapidity ($|y| < 0.8$) in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200\,GeV using the STAR detector at the Relativistic Heavy Ion Collider. In 10--80\% Au+Au collisions, the slope of the $v_{1}$ rapidity dependence ($dv_{1}/dy$), averaged over $D^{0}$ and $\overline{D^{0}}$ mesons, is -0.080 $\pm$ 0.017 (stat.) $\pm$ 0.016 (syst.) for transverse momentum $p_{\rm T}$ above 1.5~GeV/$c$. The absolute value of $D^0$-meson $dv_1/dy$ is about 25 times larger than that for charged kaons, with 3.4$\sigma$ significance. These data give a unique insight into the initial tilt of the produced matter, and offer constraints on the geometric and transport parameters of the hot QCD medium created in relativistic heavy-ion collisions.

3 data tables

Directed flow $v_1$ as a function of rapidity for $D^0$ and $\bar{D^0}$ mesons at $p_T>1.5$ GeV/c for 10–80% centrality Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

Directed flow $\langle v_1 \rangle$ for the combined samples of $D^0$ and $\bar{D^0}$ mesons at $p_T>1.5$ GeV/c for 10–80% centrality Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

Difference in $v_1(y)$ $(\Delta v_1)$ between $D^0$ and $\bar{D^0}$ mesons at $p_T>1.5$ GeV/c for 10–80% centrality Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.


Elliptic flow of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 88 (2013) 014902, 2013.
Inspire Record 1210464 DOI 10.17182/hepdata.102408

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.

342 data tables

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.

More…

Version 2
Energy and system-size dependence of two- and four-particle $v_2$ measurements in heavy-ion collisions at RHIC and their implications on flow fluctuations and nonflow

The STAR collaboration Agakishiev, G. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 86 (2012) 014904, 2012.
Inspire Record 955160 DOI 10.17182/hepdata.101341

We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants $v_2$ ($v_2\{2\}$ and $v_2\{4\}$) for Au+Au and Cu+Cu collisions at center of mass energies $\sqrt{s_{_{\mathrm{NN}}}} = 62.4$ and 200 GeV. The difference between $v_2\{2\}^2$ and $v_2\{4\}^2$ is related to $v_{2}$ fluctuations ($\sigma_{v_2}$) and nonflow $(\delta_{2})$. We present an upper limit to $\sigma_{v_2}/v_{2}$. Following the assumption that eccentricity fluctuations $\sigma_{\epsilon}$ dominate $v_2$ fluctuations $\frac{\sigma_{v_2}}{v_2} \approx \frac{\sigma_{\epsilon}}{\epsilon}$ we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with $v_2\{2\}$ and $v_2\{4\}$. We also present results on the ratio of $v_2$ to eccentricity.

28 data tables

The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.

The two-particle cumulant $v_2\{2\}^2$ for Au+Au collisions at 200 and 62.4 GeV. Results are shown with like-sign combinations (LS) and charge-independent results (CI) for $0.15 < p_T < 2.0$ GeV/$c$.

The same as the left but for Cu+Cu collisions. The systematic errors are shown as thin lines with wide caps at the ends and statistical errors are shown as thick lines with small caps at the end. Statistical and systematic errors are very small.

More…

Charge-dependent pair correlations relative to a third particle in $p$+Au and $d$+Au collisions at RHIC

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Lett.B 798 (2019) 134975, 2019.
Inspire Record 1738942 DOI 10.17182/hepdata.105911

Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions -- the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in $p$+Au and $d$+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data.

10 data tables

The $\gamma_{OS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{SS}$ correlators in p+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

The $\gamma_{OS}$ correlators in d+Au collisions at $\sqrt{s_{NN}}=200$ GeV at RHIC as a function of multiplicity.

More…

Polarization of $\Lambda$ ($\bar{\Lambda}$) hyperons along the beam direction in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.Lett. 123 (2019) 132301, 2019.
Inspire Record 1737354 DOI 10.17182/hepdata.105913

The $\Lambda$ ($\bar{\Lambda}$) hyperon polarization along the beam direction has been measured for the first time in Au+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The polarization dependence on the hyperons' emission angle relative to the second-order event plane exhibits a sine modulation, indicating a quadrupole pattern of the vorticity component along the beam direction. The polarization is found to increase in more peripheral collisions, and shows no strong transverse momentum ($p_T$) dependence at $p_T>1$ GeV/$c$. The magnitude of the signal is about five times smaller than those predicted by hydrodynamic and multiphase transport models; the observed phase of the emission angle dependence is also opposite to these model predictions. In contrast, blast-wave model calculations reproduce the modulation phase measured in the data and capture the centrality and transverse momentum dependence of the signal once the model is required to reproduce the azimuthal dependence of the Gaussian source radii measured via the Hanbury-Brown and Twiss intensity interferometry technique.

5 data tables

$\langle \cos\theta_p* \rangle$ of $\Lambda$ and $\bar{\Lambda}$ hyperons as a function of azimuthal angle $\phi$ relative to the second-order event plane $\Psi_2$ for 20%–60% centrality bin in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The second Fourier sine coefficient $\langle P_Z \sin(2\phi-2\Psi_2) \rangle$ of the polarization of $\Lambda$ and $\bar{\Lambda}$ along the beam direction as a function of the collision centrality in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The second Fourier sine coefficient $\langle P_Z \sin(2\phi-2\Psi_2) \rangle$ of the polarization of $\Lambda$ and $\bar{\Lambda}$ along the beam direction as a function of the collision centrality in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. Results updated with $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}} = 0.732$.

More…

Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at $\sqrt{s}$ = 510 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 99 (2019) 051102, 2019.
Inspire Record 1708793 DOI 10.17182/hepdata.105912

We report new STAR measurements of the single-spin asymmetries $A_L$ for $W^+$ and $W^-$ bosons produced in polarized proton--proton collisions at $\sqrt{s}$ = 510 GeV as a function of the decay-positron and decay-electron pseudorapidity. The data were obtained in 2013 and correspond to an integrated luminosity of 250 pb$^{-1}$. The results are combined with previous results obtained with 86 pb$^{-1}$. A comparison with theoretical expectations based on polarized lepton-nucleon deep-inelastic scattering and prior polarized proton--proton data suggests a difference between the $\bar{u}$ and $\bar{d}$ quark helicity distributions for $0.05 < x < 0.25$. In addition, we report new results for the double-spin asymmetries $A_{LL}$ for $W^\pm$, as well as $A_L$ for $Z/\gamma^*$ production and subsequent decay into electron--positron pairs.

19 data tables

Distribution of the product of Q, the TPC recon-structed charge-sign, and $E_T/p_T$ in the BEMC region.

Distribution of the product of Q, the TPC recon-structed charge-sign, and $E_T/p_T$ in the EEMC region.

$E_T^e$ distributions of electron candidate events, background contributions, and sum of backgrounds and $W \rightarrow e\nu$ MC signal in the BEMC region for $-1.1 < \eta_e < -0.5$.

More…

Improved measurement of the longitudinal spin transfer to $\Lambda$ and $\bar \Lambda$ hyperons in polarized proton-proton collisions at $\sqrt s$ = 200 GeV

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 98 (2018) 112009, 2018.
Inspire Record 1691152 DOI 10.17182/hepdata.105910

The longitudinal spin transfer $D_{LL}$ to $\Lambda$ and $\bar{\Lambda}$ hyperons produced in high-energy polarized proton--proton collisions is expected to be sensitive to the helicity distribution functions of strange quarks and anti-quarks of the proton, and to longitudinally polarized fragmentation functions. We report an improved measurement of $D_{LL}$ from data obtained at a center-of-mass energy of $\sqrt{s}$ = 200 GeV with the STAR detector at RHIC. The data have an approximately twelve times larger figure-of-merit than prior results and cover $|\eta|<$ 1.2 in pseudo-rapidity with transverse momenta $p_T$ up to 6 GeV/c. In the forward scattering hemisphere at largest $p_T$, the longitudinal spin transfer is found to be $D_{LL}$ = -0.036 $\pm$ 0.048 (stat) $\pm$ 0.013(sys) for $\Lambda$ hyperons and $D_{LL}$ = 0.032 $\pm$ 0.043\,(stat) $\pm$ 0.013\,(sys) for $\bar{\Lambda}$ anti-hyperons. The dependences on $\eta$ and $p_T$ are presented and compared with model evaluations.

7 data tables

The invariant mass distribution for $\Lambda$ and $\bar{\Lambda}$ candidates with 3 < p_T < $ 4 GeV/c in this analysis

The raw spin transfer $D _{LL}^{raw}$ versus cos$\theta^*$ for a) $\Lambda$ and b) $\bar{\Lambda}$ hyperons and c) the spin asymmetry $\delta_{LL}$ for the control sample of $K_S^0$ mesons versus cos$\theta^*$ for $3<p_T<4$ GeV/c for JP1 triggered sample.

The raw spin transfer $D _{LL}^{raw}$ versus cos$\theta^*$ for a) $\Lambda$ and b) $\bar{\Lambda}$ hyperons and c) the spin asymmetry $\delta_{LL}$ for the control sample of $K_S^0$ mesons versus cos$\theta^*$ for $3<p_T<4$ GeV/c for JP1 triggered sample. Results updated with $\alpha_{\Lambda (\bar{\Lambda})} = 0.732$.

More…

Three-particle coincidence of the long range pseudorapidity correlation in high energy nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 105 (2010) 022301, 2010.
Inspire Record 840812 DOI 10.17182/hepdata.102404

We report the first three-particle coincidence measurement in pseudorapidity ($\Delta\eta$) between a high transverse momentum ($p_{\perp}$) trigger particle and two lower $p_{\perp}$ associated particles within azimuth $\mid$$\Delta\phi$$\mid$$&lt;$0.7 in $\sqrt{{\it s}_{NN}}$ = 200 GeV $d$+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jet-like component and the ridge (long-range $\Delta\eta$ correlation). The results indicate that the particles from the ridge are uncorrelated in $\Delta\eta$ not only with the trigger particle but also between themselves event-by-event. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jet-like component.

15 data tables

Correlated hadron distribution in ∆φ(|η|<1 with a high-p⊥trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3GeV/c. The ZYA1-normalized flow background is shown by the curve.

Correlated hadron distribution ∆η(|∆φ|<0.7) with a high-p⊥ trigger particle in 0-12% Au+Au collisions for 3<p(t)⊥<10 GeV/c and 1<p(a)⊥<3GeV/c. The ∆η distributions are background subtracted and corrected for ∆η acceptance and are for like and unlike-sign pairs separately. The curves in are Gaussian fits. Errors are statistical.

Background-subtracted charge-independent (AAT ) correlated hadron pair density in minimum bias d+Au collisions for 3<p(t)⊥<10 GeV/cand 1<p(a)⊥<3 GeV/c. The results are for near-side correlated hadrons within |∆φ1,2|<0.7, and corrected for the 3-particle ∆η-∆η acceptance. Statistical errors at (∆η1,∆η2)∼(0,0)are approximately 0.033 for d+Au respectively.

More…

Measurement of hyper triton lifetime in Au + Au collisions at the Relativistic Heavy-Ion Collider

The STAR collaboration Adamczyk, L. ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.C 97 (2018) 054909, 2018.
Inspire Record 1628155 DOI 10.17182/hepdata.102407

A precise measurement of the hypertriton lifetime is presented. In this letter, the mesonic decay modes $\mathrm{{^3_\Lambda}H \rightarrow ^3He + \pi^-}$ and $\mathrm{{^3_\Lambda}H \rightarrow d + p + \pi^-}$ are used to reconstruct the hypertriton from Au+Au collision data collected by the STAR collaboration at RHIC. A minimum $\chi^2$ estimation is used to determine the lifetime of $\tau = 142^{+24}_{-21}\,{\rm (stat.)} {\pm} 31\,{\rm (syst.)}$ ps. This lifetime is about 50\% shorter than the lifetime $\tau = 263\pm2$ ps of a free $\Lambda$, indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R.$_{(^3{\rm He}+\pi^-)}/$(B.R.$_{(^3{\rm He}+\pi^-)}+$B.R.$_{(d+p+\pi^-)})$ = $0.32\rm{\pm}0.05\,{\rm (stat.)}\pm 0.08\,{\rm (syst.)}$. Our ratio result favors the assignment $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{1}{2}$ over $J(\mathrm{^{3}_{\Lambda}H})$ = $\frac{3}{2}$. These measurements will help to constrain models of hyperon-baryon interactions.

4 data tables

The hypertriton yield as a function of ~l/βγ for each of the two analyzed decay channels. The redpoints are for 2-body decays in four bins of ~l/βγ. The yields indicate the number of $^3_{\Lambda}$H per million events for each channel, and are already divided by the theoretical branching ratio 24.89% for the 2-body channel. The data points are fitted with the usual radioactive decay function. Using a minimum chisquare estimation.

The hypertriton yield as a function of l/βγ for each of the two analyzed decay channels. The bluesquares are for 3-body decays in four bins of l/βγ. The yield of hypertriton per million events in 3-body correct for theoretical branching ratio 40.06% 3-body channel. The data points are fitted with the usual radioactive decay function. Using a minimum chisquare estimation.

A summary of worldwide $^3_{\Lambda}$H lifetime experimental measurements and theoretical calculations. The two star markers are the STAR collaboration’s measurement published in 2010 and the present analysis. This measurement was based on the 3-body decay channel $^3_{\Lambda}$H→p+d+π−in a nuclear emulsion experiment. The shorter lifetime was attributed to the dissociation of the lightly-bound Λ and deuteron when traveling in a dense medium.

More…

Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 79 (2009) 034909, 2009.
Inspire Record 793126 DOI 10.17182/hepdata.104931

Identified charged particle spectra of $\pi^{\pm}$, $K^{\pm}$, $p$ and $\pbar$ at mid-rapidity ($|y|<0.1$) measured by the $\dedx$ method in the STAR-TPC are reported for $pp$ and d+Au collisions at $\snn = 200$ GeV and for Au+Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. ... [Shortened for arXiv list. Full abstract in manuscript.]

68 data tables

Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.

Uncorrected charged particle multiplicity distribution measured in the TPC in $|\eta| < 0.5$ for Au+Au collisions at 62.4 GeV and 200 GeV. The shaded regions indicate the centrality bins used in the analysis. The 200 GeV data are scaled by a factor 5 for clarity.

Uncorrected charged particle multiplicity distribution measured in the E-FTPC (Au-direction) within $−3.8 < |\eta| < −2.8$ in d+Au collisions at 200 GeV. The shaded regions indicate the centrality bins used in the analysis.

More…

Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at s**(1/2) = 200-GeV.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 252001, 2006.
Inspire Record 723509 DOI 10.17182/hepdata.104928

We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.

3 data tables

(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).

(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).

The longitudinal double-spin asymmetry ALL in p+p-> jet +X at sqrt(s) = 200 GeV versus jet pT. The uncertainties on the data points are statistical. The gray band indicates the systematic uncertainty from the beam polarization measurement, and the hatched band the total systematic uncertainty. The curves show predictions based on deep-inelastic scattering parametrizations of gluon polarization.


Measurement of the parity-violating longitudinal single-spin asymmetry for $W^{\pm}$ boson production in polarized proton-proton collisions at $\sqrt{s} = 500 $GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 106 (2011) 062002, 2011.
Inspire Record 866968 DOI 10.17182/hepdata.104930

We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from $W^{+}$ and $W^{-}$ boson production in longitudinally polarized proton-proton collisions at $\sqrt{s}=500 $GeV by the STAR experiment at RHIC. The measured asymmetries, $A^{W^+}_{L}=-0.27\pm 0.10\/({\rm stat.})\pm 0.02\/({\rm syst.}) \pm 0.03\/({\rm norm.})$ and $A^{W^-}_{L}=0.14\pm 0.19\/({\rm stat.})\pm 0.02 \/({\rm syst.})\pm 0.01\/({\rm norm.})$, are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.

5 data tables

$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.

$E^e_T$ for W+ (bottom) and W− (top) events showing the candidate histograms in black, the full background estimates in blue and the signal distributions in yellow.

Longitudinal single-spin asymmetry, AL, for W± events as a function of the leptonic pseudorapidity, $\eta_e$, for 25 < $E^e_T$ < 50 GeV in comparison to theory predictions

More…

Observation of an Antimatter Hypernucleus

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Science 328 (2010) 58-62, 2010.
Inspire Record 848409 DOI 10.17182/hepdata.104929

Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons - composed of an antiproton, antineutron, and antilambda hyperon - produced by colliding gold nuclei at high energy. Our analysis yields 70 +- 17 antihypertritons and 157 +- 30 hypertritons. The measured yields of hypertriton (antihypertriton) and helium3 (antihelium3) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and nuclei containing strange quarks, have implications spanning nuclear/particle physics, astrophysics, and cosmology.

5 data tables

(A, B) show the invariant mass distribution of the daughter 3He + π. The open circles represent the signal candidate distributions, while the solid black lines are background distributions. The blue dashed lines are signal (Gaussian) plus background (double exponential) combined fit.

(A, B) show the invariant mass distribution of the daughter 3He + π. The open circles represent the signal candidate distributions, while the solid black lines are background distributions. The blue dashed lines are signal (Gaussian) plus background (double exponential) combined fit. A (B) shows the 3ΛH (3Λ¯H) candidate distributions.

The 3ΛH (solid squares) and Λ (open circles) yield distributions versus cτ. The solid lines represent the cτ fits. The inset depicts the $\chi^2$ distribution of the best 3ΛH cτ fit. The error bars represent the statistical uncertaintiesonly.

More…

Pion kaon correlations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 91 (2003) 262302, 2003.
Inspire Record 624731 DOI 10.17182/hepdata.104926

Pion-kaon correlation functions are constructed from central Au+Au data taken at $\sqrt{s_{NN}} = 130$ GeV. The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e. transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.

7 data tables

Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.

Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.

Pion-kaon correlation functions and ratios of correlation functions. Errors are statistical only.

More…

Mass, quark-number, and sqrt s(NN) dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 75 (2007) 054906, 2007.
Inspire Record 741917 DOI 10.17182/hepdata.104927

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ for pions, kaons, protons, $\Lambda$, $\bar{\Lambda}$, $\Xi+\bar{\Xi}$, and $\Omega + \bar{\Omega}$, along with $v_4$ for pions, kaons, protons, and $\Lambda + \bar{\Lambda}$ at mid-rapidity for Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV. The $v_2(p_T)$ values for all hadron species at 62.4 GeV are similar to those observed in 130 and 200 GeV collisions. For observed kinematic ranges, $v_2$ values at 62.4, 130, and 200 GeV are as little as 10%--15% larger than those in Pb+Pb collisions at $\sqrt{s_{_{NN}}}=17.3$ GeV. At intermediate transverse momentum ($p_T$ from 1.5--5 GeV/c), the 62.4 GeV $v_2(p_T)$ and $v_4(p_T)$ values are consistent with the quark-number scaling first observed at 200 GeV. A four-particle cumulant analysis is used to assess the non-flow contributions to pions and protons and some indications are found for a smaller non-flow contribution to protons than pions. Baryon $v_2$ is larger than anti-baryon $v_2$ at 62.4 and 200 GeV perhaps indicating either that the initial spatial net-baryon distribution is anisotropic, that the mechanism leading to transport of baryon number from beam- to mid-rapidity enhances $v_2$, or that anti-baryon and baryon annihilation is larger in the in-plane direction.

106 data tables

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.

More…

Observation of an energy-dependent difference in elliptic flow between particles and anti-particles in relativistic heavy ion collisions

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 110 (2013) 142301, 2013.
Inspire Record 1210463 DOI 10.17182/hepdata.102939

Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.

99 data tables

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.

More…

Version 2
Measurement of the Bottom contribution to non-photonic electron production in $p+p$ collisions at $\sqrt{s} $=200 GeV

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 202301, 2010.
Inspire Record 860571 DOI 10.17182/hepdata.101352

The contribution of $B$ meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in $p+p$ collisions at $\sqrt{s} =$ 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted $B$ decay contribution is approximately 50% at a transverse momentum of $p_{T} \geq 5$ GeV/$c$. These measurements constrain the nuclear modification factor for electrons from $B$ and $D$ meson decays. The result indicates that $B$ meson production in heavy ion collisions is also suppressed at high $p_{T}$.

3 data tables

Distributions of the azimuthal angle between nonphotonic electrons and charged hadrons normalized per nonphotonic electron trigger. The trigger electron has (top) $2.5 < p_{T} < 3.5$ GeV/$c$ and (bottom) $5.5 < p_{T} < 6.5$ GeV/$c$. The curves represent PYTHIA calculations for $D$ (dotted curve) and $B$ (dashed curve) decays. The fit result is shown as the black solid curve.

(a) Background-subtracted invariant mass distribution of $K$ pairs requiring at least one nonphotonic electron trigger in the event. The solid line is a Gaussian fit to the data near the peak region. (b) Distribution of the azimuthal angle between nonphotonic electron (positron) trigger particles and $D^{0}$ ($\bar{D}^{0}$). The solid (dashed) line is a fit of the correlation function from PYTHIA (MC$@$NLO) simulations to the data points.

Transverse momentum dependence of the relative contribution from $B$ mesons ($r_{B}$) to the nonphotonic electron yields. Error bars are statistical and brackets are systematic uncertainties. The solid curve is the FONLL calculation [14]. Theoretical uncertainties are indicated by the dashed curves.


Suppression of Upsilon Production in d+Au and Au+Au Collisions at sqrt(s_NN) = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 735 (2014) 127-137, 2014.
Inspire Record 1269346 DOI 10.17182/hepdata.102940

We report measurements of Upsilon meson production in p+p, d+Au, and Au+Au collisions using the STAR detector at RHIC. We compare the Upsilon yield to the measured cross section in p+p collisions in order to quantify any modifications of the yield in cold nuclear matter using d+Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p+p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Upsilon(1S+2S+3S) in the rapidity range |y|<1 in d+Au collisions of R_dAu = 0.79 +/- 0.24 (stat.) +/- 0.03 (sys.) +/- 0.10 (pp sys.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au+Au collisions, we measure a nuclear modification factor of R_AA=0.49 +/- 0.1 (stat.) +/- 0.02 (sys.) +/- 0.06 (pp sys.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Upsilon mesons in Au+Au collisions. The additional suppression in Au+Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d+Au is still needed before any definitive statements about the nature of the suppression in Au+Au can be made.

14 data tables

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, p+p.

Invariant mass distributions of electron pairs in the region $|y_{ee}| < 0.5$, d+Au.

(a) $B_{ee} \times d\sigma/dy$ vs. $y$ for p+p collisions and for d+Au collisions (scaled down by 103).

More…

Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 142003, 2007.
Inspire Record 751885 DOI 10.17182/hepdata.102938

We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity ($-1 \leq \eta \leq +2$) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.

4 data tables

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

More…

Strange baryon resonance production in s(NN)**(1/2) = 200-GeV p + p and Au + Au collisions.

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 97 (2006) 132301, 2006.
Inspire Record 715471 DOI 10.17182/hepdata.102937

We report the measurements of $\Sigma (1385)$ and $\Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central $Au+Au$ collisions. Our results indicate that there may be a time-span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

2 data tables

The transverse mass spectra for $\Sigma^{∗}$ and $\Lambda^{∗}$ in p+p and in central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Statistical and systematical errors are included.

Resonance to stable particle ratios for p + p and Au + Au collisions. The ratios are normalized to unity in p + p and compared to thermal and UrQMD model predictions for central Au + Au [8, 12]. Statistical and systematic uncertainties are included in the error bars. (In the paper figure, K*/K dNCh/dy axis is shifted +30 for visual purposes to seperate the error bar contributions.)


Di-Jet Imbalance Measurements at $\sqrt{s_{NN}} = 200$ GeV at STAR

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 119 (2017) 062301, 2017.
Inspire Record 1486427 DOI 10.17182/hepdata.102941

We report the first di-jet transverse momentum asymmetry measurements from Au+Au and p+p collisions at RHIC. The two highest-energy back-to-back jets reconstructed from fragments with transverse momenta above 2 GeV/c display a significantly stronger momentum imbalance in heavy-ion collisions than in the p+p reference. When re-examined with correlated soft particles included, we observe that these di-jets then exhibit a unique new feature -- momentum balance is restored to that observed in p+p for a jet resolution parameter of R=0.4, while re-balancing is not attained with a smaller value of R=0.2.

11 data tables

Normalized AJ distributions for Au+Au HT data (filled symbols) and p+p HT $\oplus$ Au+Au MB (open symbols). The red circles points are for jets found using only constituents with $p^{Cut}_{T} > 2$ GeV/$c$ and the black squares for matched jets found using constituents with $p^{Cut}_{T} > 0.2$ GeV/$c$. In all cases $R = 0.4$.

$p_{T}^{Part}$ vs. $p_{T}^{Det}$ for Leading jets with $R = 0.4$.

$p_{T}^{Part}$ vs. $p_{T}^{Det}$ for Leading jets with $R = 0.2$.

More…

Spin alignment measurements of the $K^{*0}(892)$ and $\phi(1020)$ vector mesons in heavy ion collisions at $\sqrt{s}_{NN} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 77 (2008) 061902, 2008.
Inspire Record 777248 DOI 10.17182/hepdata.101350

We present the first spin alignment measurements for the $K^{*0}(892)$ and $\phi(1020)$ vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at $\sqrt{s_{NN}}$ = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are $\rho_{00}$ = 0.32 $\pm$ 0.04 (stat) $\pm$ 0.09 (syst) for the $K^{*0}$ ($0.8<p_T<5.0$ GeV/c) and $\rho_{00}$ = 0.34 $\pm$ 0.02 (stat) $\pm$ 0.03 (syst) for the $\phi$ ($0.4<p_T<5.0$ GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for $K^{*0}$ and $\phi$ in Au+Au collisions were also measured with respect to the particle's production plane. The $\phi$ result, $\rho_{00}$ = 0.41 $\pm$ 0.02 (stat) $\pm$ 0.04 (syst), is consistent with that in p+p collisions, $\rho_{00}$ = 0.39 $\pm$ 0.03 (stat) $\pm$ 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.

3 data tables

The spin-density matrix elements $\rho_{00}$ with respect to the reaction plane in midcentral $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars, and the systematic uncertainties by caps. The $K^{∗0}$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$. The bands and continuous horizontal lines show predictions discussed in the text.

The dependence of $\rho_{00}$ with respect to the reaction plane on the number of participants at midrapidity in $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $\phi$ data for $p_{T} > 2$ GeV/$c$ and the $K^{∗0}$ data points have been shifted slightly in $\langle N_{\scriptsize{\mbox{part}}}\rangle$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.

The spin-density matrix elements $\rho_{00}$ with respect to the production plane in midcentral $Au+Au$ and $p+p$ collisions at $\sqrt{s_{NN}}=200$ GeV versus $p_{T}$ of the vector meson. The sizes of the statistical uncertainties are indicated by error bars and the systematic uncertainties by caps. The $K^{*0}$ and the $\phi$ $p+p$ data points have been shifted slightly in $p_{T}$ for clarity. The dashed horizontal line indicates the unpolarized expectation $\rho_{00}=1/3$.


Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 673 (2009) 183-191, 2009.
Inspire Record 800796 DOI 10.17182/hepdata.101351

We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|&lt;0.5) for 0.4 &lt; pT &lt; 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.

8 data tables

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Midrapidity $(|y| < 0.5)$ transverse momentum spectra of $\phi$ mesons for various collision centrality classes for $Cu+Cu$ collisions at $\sqrt{s_{NN}}=62.4$ and 200 GeV. To study the system size dependence, comparison of $40-50\%$ $Au+Au$ spectra to $10-20\%$ $Cu+Cu$ spectra at 200 GeV, and $40-60\%$ $Au+Au$ spectra to $20-30\%$ $Cu+Cu$ spectra at 62.4 GeV are shown. These centralities for the two colliding systems have similar $\langle N_{\scriptsize{\mbox{part}}}\rangle$ values as outlined in Table 2. The errors represent the statistical and systematic errors added in quadrature. They are found to be within the symbol size. The spectra are fitted to a Levy function discussed in the text.

Upper panels. $N_{\scriptsize{\mbox{part}}}$ scaled ($R^{N_{\scriptsize{\mbox{part}}}}_{AA}$) nuclear modification factors as a function of $p_{T}$ of $\phi$ mesons for $0-10\%$ and $20-30\%$ $Cu+Cu$ and $Au+Au$ collisions at $\sqrt{s_{NN}}=200$ GeV. Lower panel. Same as above for $N_{\scriptsize{\mbox{bin}}}$ scaled ($R^{N_{\scriptsize{\mbox{bin}}}}_{AA}$) nuclear modification factor. The error bars represent the statistical and systematic errors added in quadrature. The shaded band in upper panel around 1 at $p_{T}=4.5-5.5$ GeV/$c$ in the right side reflects the uncertainty in $N_{\scriptsize{\mbox{part}}}$ and that on the lower panel for $N_{\scriptsize{\mbox{bin}}}$ calculation for central $Au+Au$ collisions. The respective uncertainties for central $Cu+Cu$ collisions are of similar order.

More…