Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 2306 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for pair-produced higgsinos decaying via Higgs or $Z$ bosons to final states containing a pair of photons and a pair of $b$-jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
CERN-EP-2023-039, 2024.
Inspire Record 2773395 DOI 10.17182/hepdata.144072

A search is presented for the pair production of higgsinos $\tilde{\chi}$ in gauge-mediated supersymmetry models, where the lightest neutralinos $\tilde{\chi}_1^0$ decay into a light gravitino $\tilde{G}$ either via a Higgs $h$ or $Z$ boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or $Z$ boson decays into a $b\bar{b}$ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the $b\bar{b}$ mass with the mass of the Higgs or $Z$ boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for $\tilde{\chi}_1^0\rightarrow h\tilde{G}$. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to $h\tilde{G}$ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple $b$-jets, targeting different decays of the electroweak bosons.

25 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Histograms:</b><ul> <li><a href=?table=Distribution1>Figure 3a: $m_{\gamma\gamma}$ Distribution in VR1</a> <li><a href=?table=Distribution2>Figure 3b: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR1</a> <li><a href=?table=Distribution3>Figure 3c: $m_{\gamma\gamma}$ Distribution in VR2</a> <li><a href=?table=Distribution4>Figure 3d: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR2</a> <li><a href=?table=Distribution5>Figure 4a: N-1 $m_{\gamma\gamma}$ Distribution for SR1h</a> <li><a href=?table=Distribution6>Figure 4b: N-1 $m_{\gamma\gamma}$ Distribution for SR1Z</a> <li><a href=?table=Distribution7>Figure 4c: N-1 $m_{\gamma\gamma}$ Distribution for SR2</a> <li><a href=?table=Distribution8>Auxiliary Figure 1: Signal and Validation Region Yields</a> </ul> <b>Tables:</b><ul> <li><a href=?table=YieldsTable1>Table 3: Signal Region Yields & Model-independent Limits</a> <li><a href=?table=Cutflow1>Auxiliary Table 1: Benchmark Signal Cutflows</a> </ul> <b>Cross section limits:</b><ul> <li><a href=?table=X-sectionU.L.1>Figure 5: 1D Cross-section Limits</a> <li><a href=?table=X-sectionU.L.2>Auxiliary Figure 3: 2D Cross-section Limits</a> </ul> <b>2D CL limits:</b><ul> <li><a href=?table=Exclusioncontour1>Figure 6: Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour2>Figure 6: $+1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour3>Figure 6: $-1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour4>Figure 6: Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour5>Figure 6: $+1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour6>Figure 6: $-1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> </ul> <b>2D Acceptance and Efficiency maps:</b><ul> <li><a href=?table=Acceptance1>Auxiliary Figure 4a: Acceptances SR1h</a> <li><a href=?table=Acceptance2>Auxiliary Figure 4b: Acceptances SR1Z</a> <li><a href=?table=Acceptance3>Auxiliary Figure 4c: Acceptances SR2</a> <li><a href=?table=Efficiency1>Auxiliary Figure 5a: Efficiencies SR1h</a> <li><a href=?table=Efficiency2>Auxiliary Figure 5b: Efficiencies SR1Z</a> <li><a href=?table=Efficiency3>Auxiliary Figure 5c: Efficiencies SR2</a> </ul>

Distribution of the diphoton invariant mass in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

Distribution of the missing transverse momentum in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

More…

Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 02 (2024) 107, 2024.
Inspire Record 2673888 DOI 10.17182/hepdata.139720

A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton$-$proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the $WZ$+jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.

102 data tables

Observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Positive one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

Negative one $\sigma$ observed exclusion limits at 95% CL from Fig 7(a) for $\tilde{g}$ decays into SM gauge bosons and $\tilde{\chi}^{0}_{1}$

More…

Study of $Z \to ll\gamma$ decays at $\sqrt s~$= 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 84 (2024) 195, 2024.
Inspire Record 2712353 DOI 10.17182/hepdata.131524

This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.

77 data tables

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.

Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.

More…

A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at $\sqrt s$ = 8 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 315, 2024.
Inspire Record 2698794 DOI 10.17182/hepdata.144246

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

10 data tables

Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.

Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.

Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.

More…

Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

31 data tables

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…

Measurement of inclusive J/$\psi$ pair production cross section in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 045203, 2023.
Inspire Record 2648593 DOI 10.17182/hepdata.144368

The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.

1 data table

Inclusive JPSI pair cross section in $2.5 < y < 4.0$.


Search for direct production of winos and higgsinos in events with two same-charge leptons or three leptons in $pp$ collision data at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2023) 150, 2023.
Inspire Record 2660233 DOI 10.17182/hepdata.134245

A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.

70 data tables

Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).

More…

Version 2
Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle $X$ in hadronic final states using $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 052009, 2023.
Inspire Record 2666488 DOI 10.17182/hepdata.135828

A search is presented for a heavy resonance $Y$ decaying into a Standard Model Higgs boson $H$ and a new particle $X$ in a fully hadronic final state. The full Large Hadron Collider Run 2 dataset of proton-proton collisions at $\sqrt{s}= 13$ TeV collected by the ATLAS detector from 2015 to 2018 is used, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets the high $Y$-mass region, where the $H$ and $X$ have a significant Lorentz boost in the laboratory frame. A novel signal region is implemented using anomaly detection, where events are selected solely because of their incompatibility with a learned background-only model. It is defined using a jet-level tagger for signal-model-independent selection of the boosted $X$ particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark $X$ decay into two quarks, covering topologies where the $X$ is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into $b\bar{b}$, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section $\sigma(pp \rightarrow Y \rightarrow XH \rightarrow q\bar{q}b\bar{b}$) for signals with $m_Y$ between 1.5 and 6 TeV and $m_X$ between 65 and 3000 GeV.

12 data tables

Acceptance times efficiency for signal grid in anomaly signal region.

Acceptance times efficiency for signal grid in anomaly signal region.

Acceptance times efficiency for signal grid in merged two-prong signal region.

More…

Measurement of exclusive pion pair production in proton-proton collisions at $\sqrt{s}=$7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 627, 2023.
Inspire Record 2606496 DOI 10.17182/hepdata.131222

The exclusive production of pion pairs in the process $pp\to pp\pi^+\pi^-$ has been measured at $\sqrt{s}$ = 7 TeV with the ATLAS detector at the LHC, using 80 $\mu$b$^{-1}$ of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion-pion invariant mass. Cross section values of $4.8 \pm 1.0 \text{(stat.)} + {}^{+0.3}_{-0.2} \text{(syst.)}\mu$b and $9 \pm 6 \text{(stat.)} + {}^{+2}_{-2}\text{(syst.)}\mu$b are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Version 2
Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 06 (2022) 063, 2022.
Inspire Record 2037744 DOI 10.17182/hepdata.134011

Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than $355$ GeV and the other top quark decays into $\ell \nu b$ are presented using 139 fb$^{-1}$ of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at $\sqrt{s}=13$ TeV is measured to be $\sigma = 1.267 \pm 0.005 \pm 0.053$ pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of $4.2\%$. The cross-section is measured differentially as a function of variables characterising the $t\bar{t}$ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to set limits on the Wilson coefficients of the dimension-six operators $O_{tG}$ and $O_{tq}^{(8)}$ in the effective field theory framework.

275 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <ul> <li> NLEP = 1, either E or MU, PT &gt; 27 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, R = 0.4, PT &gt; 26 GeV, ABS ETA &lt; 2.5 <li> NBJETS &gt;= 2 <li> NJETS &gt;= 1, R=1, PT &gt; 355 GeV, ABS ETA &lt; 2.0, top-tagged </ul><br/> <u>1D:</u><br/> Spectra:<br/> <ul><br/> <li>SIG (<a href="1651136742?version=1&table=Table 1">Table 1</a> ) <li>DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 2">Table 2</a> ) <li>1/SIG*DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 4">Table 4</a> ) <li>DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 5">Table 5</a> ) <li>1/SIG*DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 7">Table 7</a> ) <li>DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 8">Table 8</a> ) <li>1/SIG*DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 10">Table 10</a> ) <li>DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 11">Table 11</a> ) <li>1/SIG*DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 13">Table 13</a> ) <li>DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 14">Table 14</a> ) <li>1/SIG*DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 16">Table 16</a> ) <li>DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 17">Table 17</a> ) <li>1/SIG*DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 19">Table 19</a> ) <li>DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 20">Table 20</a> ) <li>1/SIG*DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 22">Table 22</a> ) <li>DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 23">Table 23</a> ) <li>1/SIG*DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 25">Table 25</a> ) <li>DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 26">Table 26</a> ) <li>1/SIG*DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 28">Table 28</a> ) <li>DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 29">Table 29</a> ) <li>1/SIG*DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 31">Table 31</a> ) <li>DSIG/DHT (<a href="1651136742?version=1&table=Table 32">Table 32</a> ) <li>1/SIG*DSIG/DHT (<a href="1651136742?version=1&table=Table 34">Table 34</a> ) <li>DSIG/DNJETS (<a href="1651136742?version=1&table=Table 35">Table 35</a> ) <li>1/SIG*DSIG/DNJETS (<a href="1651136742?version=1&table=Table 37">Table 37</a> ) <li>DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 38">Table 38</a> ) <li>1/SIG*DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 40">Table 40</a> ) <li>DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 41">Table 41</a> ) <li>1/SIG*DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 43">Table 43</a> ) <li>DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 44">Table 44</a> ) <li>1/SIG*DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 46">Table 46</a> ) <li>DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 47">Table 47</a> ) <li>1/SIG*DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 49">Table 49</a> ) <li>DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 50">Table 50</a> ) <li>1/SIG*DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 52">Table 52</a> ) <li>DSIG/DPT_J2 (<a href="1651136742?version=1&table=Table 53">Table 53</a> ) <li>1/SIG*DSIG/DPT_J2 (<a href="1651136742?version=1&table=Table 55">Table 55</a> ) </ul><br/> Statistical covariance matrices: <ul> <li>DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 3">Table 3</a> ) <li>DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 6">Table 6</a> ) <li>DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 9">Table 9</a> ) <li>DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 12">Table 12</a> ) <li>DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 15">Table 15</a> ) <li>DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 18">Table 18</a> ) <li>DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 21">Table 21</a> ) <li>DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 24">Table 24</a> ) <li>DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 27">Table 27</a> ) <li>DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 30">Table 30</a> ) <li>DSIG/DHT (<a href="1651136742?version=1&table=Table 33">Table 33</a> ) <li>DSIG/DNJETS (<a href="1651136742?version=1&table=Table 36">Table 36</a> ) <li>DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 39">Table 39</a> ) <li>DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 42">Table 42</a> ) <li>DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 45">Table 45</a> ) <li>DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 48">Table 48</a> ) <li>DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 51">Table 51</a> ) <li>DSIG/DPT_J2 (<a href="1651136742?version=1&table=Table 54">Table 54</a> ) </ul><br/> Inter-spectra statistical covariance matrices: <ul> <li>Statistical covariance between DSIG/DPT_THAD and DSIG/DSIG (<a href="1651136742?version=1&table=Table 104">Table 104</a> ) <li>Statistical covariance between DSIG/DPT_TLEP and DSIG/DSIG (<a href="1651136742?version=1&table=Table 105">Table 105</a> ) <li>Statistical covariance between DSIG/DPT_TLEP and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 106">Table 106</a> ) <li>Statistical covariance between DSIG/DM_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 107">Table 107</a> ) <li>Statistical covariance between DSIG/DM_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 108">Table 108</a> ) <li>Statistical covariance between DSIG/DM_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 109">Table 109</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DSIG (<a href="1651136742?version=1&table=Table 110">Table 110</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 111">Table 111</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 112">Table 112</a> ) <li>Statistical covariance between DSIG/DABS_Y_THAD and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 113">Table 113</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DSIG (<a href="1651136742?version=1&table=Table 114">Table 114</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 115">Table 115</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 116">Table 116</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 117">Table 117</a> ) <li>Statistical covariance between DSIG/DABS_Y_TLEP and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 118">Table 118</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 119">Table 119</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 120">Table 120</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 121">Table 121</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 122">Table 122</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 123">Table 123</a> ) <li>Statistical covariance between DSIG/DY_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 124">Table 124</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 125">Table 125</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 126">Table 126</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 127">Table 127</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 128">Table 128</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 129">Table 129</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 130">Table 130</a> ) <li>Statistical covariance between DSIG/DHT_TTBAR and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 131">Table 131</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DSIG (<a href="1651136742?version=1&table=Table 132">Table 132</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 133">Table 133</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 134">Table 134</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 135">Table 135</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 136">Table 136</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 137">Table 137</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 138">Table 138</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_BLEP and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 139">Table 139</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 140">Table 140</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 141">Table 141</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 142">Table 142</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 143">Table 143</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 144">Table 144</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 145">Table 145</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 146">Table 146</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 147">Table 147</a> ) <li>Statistical covariance between DSIG/DPT_TTBAR and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 148">Table 148</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DSIG (<a href="1651136742?version=1&table=Table 149">Table 149</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 150">Table 150</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 151">Table 151</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 152">Table 152</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 153">Table 153</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 154">Table 154</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 155">Table 155</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 156">Table 156</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 157">Table 157</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_TTBAR and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 158">Table 158</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DSIG (<a href="1651136742?version=1&table=Table 159">Table 159</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 160">Table 160</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 161">Table 161</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 162">Table 162</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 163">Table 163</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 164">Table 164</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 165">Table 165</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 166">Table 166</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 167">Table 167</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 168">Table 168</a> ) <li>Statistical covariance between DSIG/DHT and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 169">Table 169</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DSIG (<a href="1651136742?version=1&table=Table 170">Table 170</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 171">Table 171</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 172">Table 172</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 173">Table 173</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 174">Table 174</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 175">Table 175</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 176">Table 176</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 177">Table 177</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 178">Table 178</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 179">Table 179</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 180">Table 180</a> ) <li>Statistical covariance between DSIG/DNJETS and DSIG/DHT (<a href="1651136742?version=1&table=Table 181">Table 181</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 182">Table 182</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 183">Table 183</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 184">Table 184</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 185">Table 185</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 186">Table 186</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 187">Table 187</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 188">Table 188</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 189">Table 189</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 190">Table 190</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 191">Table 191</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 192">Table 192</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DHT (<a href="1651136742?version=1&table=Table 193">Table 193</a> ) <li>Statistical covariance between DSIG/DPT_J1 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 194">Table 194</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DSIG (<a href="1651136742?version=1&table=Table 195">Table 195</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 196">Table 196</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 197">Table 197</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 198">Table 198</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 199">Table 199</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 200">Table 200</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 201">Table 201</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 202">Table 202</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 203">Table 203</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 204">Table 204</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 205">Table 205</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DHT (<a href="1651136742?version=1&table=Table 206">Table 206</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 207">Table 207</a> ) <li>Statistical covariance between DSIG/DM_J1_THAD and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 208">Table 208</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 209">Table 209</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 210">Table 210</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 211">Table 211</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 212">Table 212</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 213">Table 213</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 214">Table 214</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 215">Table 215</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 216">Table 216</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 217">Table 217</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 218">Table 218</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 219">Table 219</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DHT (<a href="1651136742?version=1&table=Table 220">Table 220</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 221">Table 221</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 222">Table 222</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J1 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 223">Table 223</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 224">Table 224</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 225">Table 225</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 226">Table 226</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 227">Table 227</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 228">Table 228</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 229">Table 229</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 230">Table 230</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 231">Table 231</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 232">Table 232</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 233">Table 233</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 234">Table 234</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DHT (<a href="1651136742?version=1&table=Table 235">Table 235</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 236">Table 236</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 237">Table 237</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 238">Table 238</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_THAD_J2 and DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 239">Table 239</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 240">Table 240</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 241">Table 241</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 242">Table 242</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 243">Table 243</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 244">Table 244</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 245">Table 245</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 246">Table 246</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 247">Table 247</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 248">Table 248</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 249">Table 249</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 250">Table 250</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DHT (<a href="1651136742?version=1&table=Table 251">Table 251</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 252">Table 252</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 253">Table 253</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 254">Table 254</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 255">Table 255</a> ) <li>Statistical covariance between DSIG/DDPHIOPI_J1_J2 and DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 256">Table 256</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DSIG (<a href="1651136742?version=1&table=Table 257">Table 257</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_THAD (<a href="1651136742?version=1&table=Table 258">Table 258</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_TLEP (<a href="1651136742?version=1&table=Table 259">Table 259</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DM_TTBAR (<a href="1651136742?version=1&table=Table 260">Table 260</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DABS_Y_THAD (<a href="1651136742?version=1&table=Table 261">Table 261</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DABS_Y_TLEP (<a href="1651136742?version=1&table=Table 262">Table 262</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DY_TTBAR (<a href="1651136742?version=1&table=Table 263">Table 263</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DHT_TTBAR (<a href="1651136742?version=1&table=Table 264">Table 264</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_THAD_BLEP (<a href="1651136742?version=1&table=Table 265">Table 265</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_TTBAR (<a href="1651136742?version=1&table=Table 266">Table 266</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_TTBAR (<a href="1651136742?version=1&table=Table 267">Table 267</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DHT (<a href="1651136742?version=1&table=Table 268">Table 268</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DNJETS (<a href="1651136742?version=1&table=Table 269">Table 269</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DPT_J1 (<a href="1651136742?version=1&table=Table 270">Table 270</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DM_J1_THAD (<a href="1651136742?version=1&table=Table 271">Table 271</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_THAD_J1 (<a href="1651136742?version=1&table=Table 272">Table 272</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_THAD_J2 (<a href="1651136742?version=1&table=Table 273">Table 273</a> ) <li>Statistical covariance between DSIG/DPT_J2 and DSIG/DDPHIOPI_J1_J2 (<a href="1651136742?version=1&table=Table 274">Table 274</a> ) </ul><br/> <u>2D:</u><br/> Spectra: <ul> <li>1/SIG*D2SIG/DPT_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 56">Table 56</a> ) <li>1/SIG*D2SIG/DPT_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 57">Table 57</a> ) <li>1/SIG*D2SIG/DPT_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 58">Table 58</a> ) <li>D2SIG/DPT_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 59">Table 59</a> ) <li>D2SIG/DPT_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 60">Table 60</a> ) <li>D2SIG/DPT_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 61">Table 61</a> ) <li>1/SIG*D2SIG/DPT_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 68">Table 68</a> ) <li>1/SIG*D2SIG/DPT_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 69">Table 69</a> ) <li>1/SIG*D2SIG/DPT_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 70">Table 70</a> ) <li>D2SIG/DPT_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 71">Table 71</a> ) <li>D2SIG/DPT_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 72">Table 72</a> ) <li>D2SIG/DPT_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 73">Table 73</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 80">Table 80</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 81">Table 81</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 82">Table 82</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 355.0 GeV < PT_THAD < 398.0 GeV) (<a href="1651136742?version=1&table=Table 83">Table 83</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 398.0 GeV < PT_THAD < 496.0 GeV) (<a href="1651136742?version=1&table=Table 84">Table 84</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DPT_THAD ( 496.0 GeV < PT_THAD < 2000.0 GeV) (<a href="1651136742?version=1&table=Table 85">Table 85</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 92">Table 92</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 93">Table 93</a> ) <li>1/SIG*D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 94">Table 94</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 1) (<a href="1651136742?version=1&table=Table 95">Table 95</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS = 2) (<a href="1651136742?version=1&table=Table 96">Table 96</a> ) <li>D2SIG/DDPHIOPI_THAD_J1/DNJETS (NJETS $\geq$ 3) (<a href="1651136742?version=1&table=Table 97">Table 97</a> ) </ul><br/> Statistical covariance matrices: <ul> <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 1st and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 62">Table 62</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 2nd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 63">Table 63</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 2nd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 64">Table 64</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 3rd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 65">Table 65</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 3rd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 66">Table 66</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DNJETS between the 3rd and 3rd bins of NJETS (<a href="1651136742?version=1&table=Table 67">Table 67</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 1st and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 74">Table 74</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 2nd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 75">Table 75</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 2nd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 76">Table 76</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 3rd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 77">Table 77</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 3rd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 78">Table 78</a> ) <li>Statistical covariance matrix for D2SIG/DPT_J1/DPT_THAD between the 3rd and 3rd bins of PT_THAD (<a href="1651136742?version=1&table=Table 79">Table 79</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 1st and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 86">Table 86</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 2nd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 87">Table 87</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 2nd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 88">Table 88</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 3rd and 1st bins of PT_THAD (<a href="1651136742?version=1&table=Table 89">Table 89</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 3rd and 2nd bins of PT_THAD (<a href="1651136742?version=1&table=Table 90">Table 90</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DPT_THAD between the 3rd and 3rd bins of PT_THAD (<a href="1651136742?version=1&table=Table 91">Table 91</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 1st and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 98">Table 98</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 2nd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 99">Table 99</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 2nd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 100">Table 100</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 3rd and 1st bins of NJETS (<a href="1651136742?version=1&table=Table 101">Table 101</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 3rd and 2nd bins of NJETS (<a href="1651136742?version=1&table=Table 102">Table 102</a> ) <li>Statistical covariance matrix for D2SIG/DDPHIOPI_THAD_J1/DNJETS between the 3rd and 3rd bins of NJETS (<a href="1651136742?version=1&table=Table 103">Table 103</a> ) </ul><br/>

Total cross-section at particle level in the boosted topology. Note that the values shown here are obtained by propagating the individual uncertainties to the measured cross-sections, while the covariance matrices are evaluated using pseudo-experiments as described in the text. The measured cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

Absolute differential cross-section as a function of $p_T^{t,h}$ at particle level in the boosted topology. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.

More…

Inclusive-photon production and its dependence on photon isolation in $pp$ collisions at $\sqrt s=13$ TeV using 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 086, 2023.
Inspire Record 2628741 DOI 10.17182/hepdata.134100

Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.

48 data tables

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.

Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.

More…

Observation of single-top-quark production in association with a photon using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Phys.Rev.Lett. 131 (2023) 181901, 2023.
Inspire Record 2628980 DOI 10.17182/hepdata.134244

This Letter reports the observation of single top quarks produced together with a photon, which directly probes the electroweak coupling of the top quark. The analysis uses 139 fb$^{-1}$ of 13 TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. Requiring a photon with transverse momentum larger than 20 GeV and within the detector acceptance, the fiducial cross section is measured to be 688 $\pm$ 23 (stat.) $^{+75}_{-71}$ (syst.) fb, to be compared with the standard model prediction of 515 $^{+36}_{-42}$ fb at next-to-leading order in QCD.

26 data tables

This table shows the values for $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)$ and $\sigma_{tq\gamma}\times\mathcal{B}(t\rightarrow l\nu b)+\sigma_{t(\rightarrow l\nu b\gamma)q}$ obtained by a profile-likelihood fit in the fiducial parton-level phase space (defined in Table 1) and particle-level phase space (defined in Table 2), respectively.

Distribution of the reconstructed top-quark mass in the $W\gamma\,$CR before the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions. The first and last bins include the underflow and overflow, respectively.

Distribution of the NN output in the 0fj$\,$SR in data and the expected contribution of the signal and background processes after the profile-likelihood fit. The "Total" column corresponds to the sum of the expected contributions from the signal and background processes. The uncertainty represents the sum of statistical and systematic uncertainties in the signal and background predictions considering the correlations of the uncertainties as obtained by the fit.

More…

Search in diphoton and dielectron final states for displaced production of Higgs or $Z$ bosons with the ATLAS detector in $\sqrt{s} = 13$ TeV $pp$ collisions

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 108 (2023) 012012, 2023.
Inspire Record 2654099 DOI 10.17182/hepdata.135829

A search is presented for displaced production of Higgs bosons or $Z$ bosons, originating from the decay of a neutral long-lived particle (LLP) and reconstructed in the decay modes $H\rightarrow \gamma\gamma$ and $Z\rightarrow ee$. The analysis uses the full Run 2 data set of proton$-$proton collisions delivered by the LHC at an energy of $\sqrt{s}=13$ TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb$^{-1}$. Exploiting the capabilities of the ATLAS liquid argon calorimeter to precisely measure the arrival times and trajectories of electromagnetic objects, the analysis searches for the signature of pairs of photons or electrons which arise from a common displaced vertex and which arrive after some delay at the calorimeter. The results are interpreted in a gauge-mediated supersymmetry breaking model with pair-produced higgsinos that decay to LLPs, and each LLP subsequently decays into either a Higgs boson or a $Z$ boson. The final state includes at least two particles that escape direct detection, giving rise to missing transverse momentum. No significant excess is observed above the background expectation. The results are used to set upper limits on the cross section for higgsino pair production, up to a $\tilde\chi^0_1$ mass of 369 (704) GeV for decays with 100% branching ratio of $\tilde\chi^0_1$ to Higgs ($Z$) bosons for a $\tilde\chi^0_1$ lifetime of 2 ns. A model-independent limit is also set on the production of pairs of photons or electrons with a significant delay in arrival at the calorimeter.

45 data tables

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.

More…

Measurement of the production of a $W$ boson in association with a charmed hadron in $pp$ collisions at $\sqrt{s} = 13\,\mathrm{TeV}$ with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.D 108 (2023) 032012, 2023.
Inspire Record 2628732 DOI 10.17182/hepdata.136060

The production of a $W$ boson in association with a single charm quark is studied using 140 $\mathrm{fb}^{-1}$ of $\sqrt{s} = 13\,\mathrm{TeV}$ proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider. The charm quark is tagged by a charmed hadron, reconstructed with a secondary-vertex fit. The $W$ boson is reconstructed from an electron/muon decay and the missing transverse momentum. The mesons reconstructed are $D^{\pm} \to K^\mp \pi^\pm \pi^\pm$ and $D^{*\pm} \to D^{0} \pi^\pm \to (K^\mp \pi^\pm) \pi^\pm$, where $p_{\text{T}}(e, \mu) > 30\,\mathrm{GeV}$, $|\eta(e, \mu)| < 2.5$, $p_{\text{T}}(D) > 8\,\mathrm{GeV}$, and $|\eta(D)| < 2.2$. The integrated and normalized differential cross-sections as a function of the pseudorapidity of the lepton from the $W$ boson decay, and of the transverse momentum of the meson, are extracted from the data using a profile likelihood fit. The measured fiducial cross-sections are $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{+}) = 50.2\pm0.2\,\mathrm{(stat.)}\,^{+2.4}_{-2.3}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{-}) = 48.5\pm0.2\,\mathrm{(stat.)}\,^{+2.3}_{-2.2}\,\mathrm{(syst.)}\,\mathrm{pb}$, $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{-}{+}D^{*+}) = 51.1\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$, and $\sigma^{\mathrm{OS-SS}}_{\mathrm{fid}}(W^{+}{+}D^{*-}) = 50.0\pm0.4\,\mathrm{(stat.)}\,^{+1.9}_{-1.8}\,\mathrm{(syst.)}\,\mathrm{pb}$. Results are compared with the predictions of next-to-leading-order quantum chromodynamics calculations performed using state-of-the-art parton distribution functions. The ratio of charm to anti-charm production cross-sections is studied to probe the $s$-$\bar{s}$ quark asymmetry and is found to be $R_c^\pm = 0.971\pm0.006\,\mathrm{(stat.)}\pm0.011\,\mathrm{(syst.)}$.

23 data tables

Measured fiducial cross-sections times the single-lepton-flavor W boson branching ratio.

Measured cross section ratios for the W+D production. The $R_{c}(D^{(*)})$ observable is obtained by combining the individual measurements of $R_{c}(D^{+})$ and $R_{c}(D^{*+})$ as explained in the text. The displayed cross sections are integrated over each differential bin.

Measured $p_{\mathrm{T}}(D^{+})$ differential fiducial cross-section times the single-lepton-flavor W boson branching ratio in the $W^{-}+D^{+}$ channel. The last $p_{\mathrm{T}}$ bin has no upper bound. The displayed cross sections are integrated over each differential bin.

More…

Version 3
Observation of electroweak production of two jets and a $Z$-boson pair

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Brad ; et al.
Nature Phys. 19 (2023) 237-253, 2023.
Inspire Record 1792133 DOI 10.17182/hepdata.93015

Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin one allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a $Z$-boson pair is a rare and important one. Here we report the observation of this process from proton-proton collision data corresponding to an integrated luminosity of 139/fb recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the $Z$-boson pair - one containing four charged leptons and the other containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7 $\sigma$, and the measured cross-section for electroweak production is consistent with the standard model prediction. In addition, we report cross-sections for inclusive production of a $Z$-boson pair and two jets for the two final states.

11 data tables

Measured and predicted fiducial cross-sections in both the lllljj and ll$\nu\nu$jj channels for the inclusive ZZjj processes. Uncertainties due to different sources are presented

Signal strength and significance of EW ZZjj processes

Signal strength and significance of EW ZZjj processes

More…

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

1011 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> NLEP = 0, E or MU, PT &gt; 25 GeV, ABS ETA &lt; 2.5 <li> NJETS &gt;= 2, R = 1.0, 350 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> NJETS &gt;= 1, R = 1.0, 500 GeV &lt; PT &lt; 3000 GeV, ABS ETA &lt; 2, M &gt; 50 GeV <li> T1, MIN ( ABS ( M - 172.5 GeV ) ), candidate JETS with PT &gt; 500 GeV <li> T2, MIN ( ABS ( M - 172.5 GeV ) ), remaining candidate JETS with PT &gt; 350 GeV <li> T1 and T2, 122.5 GeV &lt; M &lt; 222.5 GeV, ghost-matched B-HAD with PT &gt; 5 GeV </ul><br/> <i>Parton level:</i> <ul> <li> PT_T1 &gt; 500 GeV, PT_T2 &gt; 350 GeV </ul><br/> <b>Particle level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 1">Table 1</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 2">Table 2</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 3">Table 3</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 4">Table 4</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 5">Table 5</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 6">Table 6</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 7">Table 7</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 8">Table 8</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 9">Table 9</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 10">Table 10</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 11">Table 11</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 12">Table 12</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 13">Table 13</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 14">Table 14</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 15">Table 15</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 16">Table 16</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 74">Table 74</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 75">Table 75</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 76">Table 76</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 77">Table 77</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 78">Table 78</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 79">Table 79</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 80">Table 80</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 81">Table 81</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 82">Table 82</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 83">Table 83</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 84">Table 84</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 85">Table 85</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 86">Table 86</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 87">Table 87</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 88">Table 88</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 291">Table 291</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 292">Table 292</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 293">Table 293</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 294">Table 294</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 295">Table 295</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 296">Table 296</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 297">Table 297</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 298">Table 298</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 299">Table 299</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 300">Table 300</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 301">Table 301</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 302">Table 302</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 303">Table 303</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 304">Table 304</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 305">Table 305</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 471">Table 471</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 472">Table 472</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 473">Table 473</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 474">Table 474</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 475">Table 475</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 476">Table 476</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 477">Table 477</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 478">Table 478</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 479">Table 479</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 480">Table 480</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 481">Table 481</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 482">Table 482</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 483">Table 483</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 484">Table 484</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 485">Table 485</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 17">Table 17</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 18">Table 18</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 19">Table 19</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 20">Table 20</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 21">Table 21</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 22">Table 22</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 23">Table 23</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 24">Table 24</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 25">Table 25</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 26">Table 26</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 27">Table 27</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 28">Table 28</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 29">Table 29</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 30">Table 30</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 31">Table 31</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 32">Table 32</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 33">Table 33</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 34">Table 34</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 35">Table 35</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 36">Table 36</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 37">Table 37</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 38">Table 38</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 39">Table 39</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 40">Table 40</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 41">Table 41</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 42">Table 42</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 43">Table 43</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 44">Table 44</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 45">Table 45</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 46">Table 46</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 47">Table 47</a>) <li>D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 48">Table 48</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 49">Table 49</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 50">Table 50</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 51">Table 51</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 52">Table 52</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 53">Table 53</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 54">Table 54</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 55">Table 55</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 56">Table 56</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 57">Table 57</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 58">Table 58</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 59">Table 59</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 60">Table 60</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 61">Table 61</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 62">Table 62</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 63">Table 63</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 64">Table 64</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 89">Table 89</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 90">Table 90</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 91">Table 91</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 92">Table 92</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 93">Table 93</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 94">Table 94</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 95">Table 95</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 96">Table 96</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 97">Table 97</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 98">Table 98</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 99">Table 99</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 100">Table 100</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 101">Table 101</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 102">Table 102</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 103">Table 103</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 104">Table 104</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 105">Table 105</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 106">Table 106</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 107">Table 107</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 108">Table 108</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 109">Table 109</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 110">Table 110</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 111">Table 111</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 112">Table 112</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 113">Table 113</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 114">Table 114</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 115">Table 115</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 116">Table 116</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 117">Table 117</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 118">Table 118</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 119">Table 119</a>) <li>1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 120">Table 120</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 121">Table 121</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 122">Table 122</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 123">Table 123</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 124">Table 124</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 125">Table 125</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 126">Table 126</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 127">Table 127</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 128">Table 128</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 129">Table 129</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 130">Table 130</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 131">Table 131</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 132">Table 132</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 133">Table 133</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 134">Table 134</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 135">Table 135</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 136">Table 136</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 306">Table 306</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 307">Table 307</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 308">Table 308</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 309">Table 309</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 310">Table 310</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 311">Table 311</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 312">Table 312</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 313">Table 313</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 314">Table 314</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 315">Table 315</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 316">Table 316</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 317">Table 317</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 318">Table 318</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 319">Table 319</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 320">Table 320</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 321">Table 321</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 322">Table 322</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 323">Table 323</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 324">Table 324</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 325">Table 325</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 326">Table 326</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 327">Table 327</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 328">Table 328</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 329">Table 329</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 330">Table 330</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 331">Table 331</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 332">Table 332</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 333">Table 333</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 334">Table 334</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 335">Table 335</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 336">Table 336</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 337">Table 337</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 338">Table 338</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 339">Table 339</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 340">Table 340</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 341">Table 341</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 342">Table 342</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 343">Table 343</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 344">Table 344</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 345">Table 345</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 346">Table 346</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 347">Table 347</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 348">Table 348</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 349">Table 349</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 350">Table 350</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 351">Table 351</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 352">Table 352</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 353">Table 353</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 354">Table 354</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 355">Table 355</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 356">Table 356</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 357">Table 357</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 358">Table 358</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 359">Table 359</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 360">Table 360</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 361">Table 361</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 362">Table 362</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 363">Table 363</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 364">Table 364</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 365">Table 365</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 366">Table 366</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 367">Table 367</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 368">Table 368</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 369">Table 369</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 370">Table 370</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 371">Table 371</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 372">Table 372</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 373">Table 373</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 374">Table 374</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 375">Table 375</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 376">Table 376</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 377">Table 377</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 378">Table 378</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 379">Table 379</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 380">Table 380</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 381">Table 381</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 382">Table 382</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 383">Table 383</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 384">Table 384</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 385">Table 385</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 386">Table 386</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 387">Table 387</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 388">Table 388</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 389">Table 389</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 390">Table 390</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 391">Table 391</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 392">Table 392</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 393">Table 393</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 394">Table 394</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 395">Table 395</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 396">Table 396</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 397">Table 397</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 398">Table 398</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 399">Table 399</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 400">Table 400</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 401">Table 401</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 402">Table 402</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 403">Table 403</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 404">Table 404</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 405">Table 405</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 406">Table 406</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 407">Table 407</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 408">Table 408</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 409">Table 409</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 410">Table 410</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 411">Table 411</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 412">Table 412</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 413">Table 413</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 414">Table 414</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 415">Table 415</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 416">Table 416</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 417">Table 417</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 418">Table 418</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 419">Table 419</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 420">Table 420</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 421">Table 421</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 422">Table 422</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 423">Table 423</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 424">Table 424</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 425">Table 425</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 486">Table 486</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 487">Table 487</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 488">Table 488</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 489">Table 489</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 490">Table 490</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 491">Table 491</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 492">Table 492</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 493">Table 493</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 494">Table 494</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 495">Table 495</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 496">Table 496</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 497">Table 497</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 498">Table 498</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 499">Table 499</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 500">Table 500</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 501">Table 501</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 502">Table 502</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 503">Table 503</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 504">Table 504</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 505">Table 505</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 506">Table 506</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 507">Table 507</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 508">Table 508</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 509">Table 509</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 510">Table 510</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 511">Table 511</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 512">Table 512</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 513">Table 513</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 514">Table 514</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 515">Table 515</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 516">Table 516</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 517">Table 517</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 518">Table 518</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 519">Table 519</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 520">Table 520</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 521">Table 521</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 522">Table 522</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 523">Table 523</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 524">Table 524</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 525">Table 525</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 526">Table 526</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 527">Table 527</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 528">Table 528</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 529">Table 529</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 530">Table 530</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 531">Table 531</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 532">Table 532</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 533">Table 533</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 534">Table 534</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 535">Table 535</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 536">Table 536</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 537">Table 537</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 538">Table 538</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 539">Table 539</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 540">Table 540</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 541">Table 541</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 542">Table 542</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 543">Table 543</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 544">Table 544</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 545">Table 545</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 546">Table 546</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 547">Table 547</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 548">Table 548</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 549">Table 549</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 550">Table 550</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 551">Table 551</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 552">Table 552</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 553">Table 553</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 554">Table 554</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 555">Table 555</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 556">Table 556</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 557">Table 557</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 558">Table 558</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 559">Table 559</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 560">Table 560</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 561">Table 561</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 562">Table 562</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 563">Table 563</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 564">Table 564</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 565">Table 565</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 566">Table 566</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 567">Table 567</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 568">Table 568</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 569">Table 569</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 570">Table 570</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 571">Table 571</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 572">Table 572</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 573">Table 573</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 574">Table 574</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 575">Table 575</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 576">Table 576</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 577">Table 577</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 578">Table 578</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 579">Table 579</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 580">Table 580</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 581">Table 581</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 582">Table 582</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 583">Table 583</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 584">Table 584</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 585">Table 585</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 586">Table 586</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 587">Table 587</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 588">Table 588</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 589">Table 589</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 590">Table 590</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 591">Table 591</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 592">Table 592</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 593">Table 593</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 594">Table 594</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 595">Table 595</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 596">Table 596</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 597">Table 597</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 598">Table 598</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 599">Table 599</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 600">Table 600</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 601">Table 601</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 602">Table 602</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 603">Table 603</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 604">Table 604</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 605">Table 605</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 65">Table 65</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 66">Table 66</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 67">Table 67</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 68">Table 68</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 69">Table 69</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 70">Table 70</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 71">Table 71</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 72">Table 72</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 73">Table 73</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 137">Table 137</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 138">Table 138</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 139">Table 139</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 140">Table 140</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 141">Table 141</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 142">Table 142</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 143">Table 143</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 144">Table 144</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 145">Table 145</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 426">Table 426</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 427">Table 427</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 428">Table 428</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 429">Table 429</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 430">Table 430</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 431">Table 431</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 432">Table 432</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 433">Table 433</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 434">Table 434</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 435">Table 435</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 436">Table 436</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 437">Table 437</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 438">Table 438</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 439">Table 439</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 440">Table 440</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 441">Table 441</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 442">Table 442</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 443">Table 443</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 444">Table 444</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 445">Table 445</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 446">Table 446</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 447">Table 447</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 448">Table 448</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 449">Table 449</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 450">Table 450</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 451">Table 451</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 452">Table 452</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 453">Table 453</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 454">Table 454</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 455">Table 455</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 456">Table 456</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 457">Table 457</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 458">Table 458</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 459">Table 459</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 460">Table 460</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 461">Table 461</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 462">Table 462</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 463">Table 463</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 464">Table 464</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 465">Table 465</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 466">Table 466</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 467">Table 467</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 468">Table 468</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 469">Table 469</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 470">Table 470</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 606">Table 606</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 607">Table 607</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 608">Table 608</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 609">Table 609</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 610">Table 610</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 611">Table 611</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 612">Table 612</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 613">Table 613</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 614">Table 614</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 615">Table 615</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 616">Table 616</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 617">Table 617</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 618">Table 618</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 619">Table 619</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 620">Table 620</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 621">Table 621</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 622">Table 622</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 623">Table 623</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 624">Table 624</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 625">Table 625</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 626">Table 626</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 627">Table 627</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 628">Table 628</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 629">Table 629</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 630">Table 630</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 631">Table 631</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 632">Table 632</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 633">Table 633</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 634">Table 634</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 635">Table 635</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 636">Table 636</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 637">Table 637</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 638">Table 638</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 639">Table 639</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 640">Table 640</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 641">Table 641</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 642">Table 642</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 643">Table 643</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 644">Table 644</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 645">Table 645</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 646">Table 646</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 647">Table 647</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 648">Table 648</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 649">Table 649</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 650">Table 650</a>) </ul><br/> <b>Parton level:</b><br/> <u>1D:</u><br/> Spectra: <ul><br/> <li>SIG (<a href="115142?table=Table 146">Table 146</a>) <li>DSIG/DPT_TOP (<a href="115142?table=Table 147">Table 147</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 148">Table 148</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 149">Table 149</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 150">Table 150</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 151">Table 151</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 152">Table 152</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 153">Table 153</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 154">Table 154</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 155">Table 155</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 156">Table 156</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 157">Table 157</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 158">Table 158</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 159">Table 159</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 160">Table 160</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 161">Table 161</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 219">Table 219</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 220">Table 220</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 221">Table 221</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 222">Table 222</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 223">Table 223</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 224">Table 224</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 225">Table 225</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 226">Table 226</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 227">Table 227</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 228">Table 228</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 229">Table 229</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 230">Table 230</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 231">Table 231</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 232">Table 232</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 233">Table 233</a>) </ul><br/> Covariances: <ul><br/> <li>DSIG/DPT_TOP (<a href="115142?table=Table 651">Table 651</a>) <li>DSIG/DABS_Y_TOP (<a href="115142?table=Table 652">Table 652</a>) <li>DSIG/DPT_T1 (<a href="115142?table=Table 653">Table 653</a>) <li>DSIG/DABS_Y_T1 (<a href="115142?table=Table 654">Table 654</a>) <li>DSIG/DPT_T2 (<a href="115142?table=Table 655">Table 655</a>) <li>DSIG/DABS_Y_T2 (<a href="115142?table=Table 656">Table 656</a>) <li>DSIG/DM_TTBAR (<a href="115142?table=Table 657">Table 657</a>) <li>DSIG/DPT_TTBAR (<a href="115142?table=Table 658">Table 658</a>) <li>DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 659">Table 659</a>) <li>DSIG/DCHI_TTBAR (<a href="115142?table=Table 660">Table 660</a>) <li>DSIG/DABS_Y_BOOST (<a href="115142?table=Table 661">Table 661</a>) <li>DSIG/DABS_POUT (<a href="115142?table=Table 662">Table 662</a>) <li>DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 663">Table 663</a>) <li>DSIG/DHT_TTBAR (<a href="115142?table=Table 664">Table 664</a>) <li>DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 665">Table 665</a>) <li>1/SIG*DSIG/DPT_TOP (<a href="115142?table=Table 831">Table 831</a>) <li>1/SIG*DSIG/DABS_Y_TOP (<a href="115142?table=Table 832">Table 832</a>) <li>1/SIG*DSIG/DPT_T1 (<a href="115142?table=Table 833">Table 833</a>) <li>1/SIG*DSIG/DABS_Y_T1 (<a href="115142?table=Table 834">Table 834</a>) <li>1/SIG*DSIG/DPT_T2 (<a href="115142?table=Table 835">Table 835</a>) <li>1/SIG*DSIG/DABS_Y_T2 (<a href="115142?table=Table 836">Table 836</a>) <li>1/SIG*DSIG/DM_TTBAR (<a href="115142?table=Table 837">Table 837</a>) <li>1/SIG*DSIG/DPT_TTBAR (<a href="115142?table=Table 838">Table 838</a>) <li>1/SIG*DSIG/DABS_Y_TTBAR (<a href="115142?table=Table 839">Table 839</a>) <li>1/SIG*DSIG/DCHI_TTBAR (<a href="115142?table=Table 840">Table 840</a>) <li>1/SIG*DSIG/DABS_Y_BOOST (<a href="115142?table=Table 841">Table 841</a>) <li>1/SIG*DSIG/DABS_POUT (<a href="115142?table=Table 842">Table 842</a>) <li>1/SIG*DSIG/DABS_DPHI_TTBAR (<a href="115142?table=Table 843">Table 843</a>) <li>1/SIG*DSIG/DHT_TTBAR (<a href="115142?table=Table 844">Table 844</a>) <li>1/SIG*DSIG/DABS_COS_THETA_STAR (<a href="115142?table=Table 845">Table 845</a>) </ul><br/> <u>2D:</u><br/> Spectra: <ul><br/> <li>D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 162">Table 162</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 163">Table 163</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 164">Table 164</a>) <li>D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 165">Table 165</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 166">Table 166</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 167">Table 167</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 168">Table 168</a>) <li>D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 169">Table 169</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 170">Table 170</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 171">Table 171</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 172">Table 172</a>) <li>D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 173">Table 173</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 174">Table 174</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 175">Table 175</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 176">Table 176</a>) <li>D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 177">Table 177</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 178">Table 178</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 179">Table 179</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 180">Table 180</a>) <li>D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 181">Table 181</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 182">Table 182</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 183">Table 183</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 184">Table 184</a>) <li>D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 185">Table 185</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 186">Table 186</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 187">Table 187</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 188">Table 188</a>) <li>D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 189">Table 189</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 190">Table 190</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 191">Table 191</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 192">Table 192</a>) <li>D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 193">Table 193</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 194">Table 194</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 195">Table 195</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 196">Table 196</a>) <li>D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 197">Table 197</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 198">Table 198</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 199">Table 199</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 200">Table 200</a>) <li>D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 201">Table 201</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 202">Table 202</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 203">Table 203</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 204">Table 204</a>) <li>D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 205">Table 205</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 206">Table 206</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 207">Table 207</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 208">Table 208</a>) <li>D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 209">Table 209</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.50 TeV &lt; PT_T1 &lt; 0.55 TeV) (<a href="115142?table=Table 234">Table 234</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.55 TeV &lt; PT_T1 &lt; 0.60 TeV) (<a href="115142?table=Table 235">Table 235</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.60 TeV &lt; PT_T1 &lt; 0.75 TeV) (<a href="115142?table=Table 236">Table 236</a>) <li>1/SIG*D2SIG/DPT_T2/DPT_T1 (0.75 TeV &lt; PT_T1 &lt; 2.00 TeV) (<a href="115142?table=Table 237">Table 237</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 238">Table 238</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 239">Table 239</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 240">Table 240</a>) <li>1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 241">Table 241</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 242">Table 242</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 243">Table 243</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 244">Table 244</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 245">Table 245</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.0 &lt; ABS_Y_T2 &lt; 0.2) (<a href="115142?table=Table 246">Table 246</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.2 &lt; ABS_Y_T2 &lt; 0.5) (<a href="115142?table=Table 247">Table 247</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (0.5 &lt; ABS_Y_T2 &lt; 1.0) (<a href="115142?table=Table 248">Table 248</a>) <li>1/SIG*D2SIG/DPT_T2/DABS_Y_T2 (1.0 &lt; ABS_Y_T2 &lt; 2.0) (<a href="115142?table=Table 249">Table 249</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 250">Table 250</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 251">Table 251</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 252">Table 252</a>) <li>1/SIG*D2SIG/DPT_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 253">Table 253</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.500 TeV &lt; PT_T1 &lt; 0.550 TeV) (<a href="115142?table=Table 254">Table 254</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.550 TeV &lt; PT_T1 &lt; 0.625 TeV) (<a href="115142?table=Table 255">Table 255</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.625 TeV &lt; PT_T1 &lt; 0.750 TeV) (<a href="115142?table=Table 256">Table 256</a>) <li>1/SIG*D2SIG/DM_TTBAR/DPT_T1 (0.750 TeV &lt; PT_T1 &lt; 2.000 TeV) (<a href="115142?table=Table 257">Table 257</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 258">Table 258</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 259">Table 259</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 260">Table 260</a>) <li>1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 261">Table 261</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 262">Table 262</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 263">Table 263</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 264">Table 264</a>) <li>1/SIG*D2SIG/DY_T1/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 265">Table 265</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.0 &lt; ABS_Y_T1 &lt; 0.2) (<a href="115142?table=Table 266">Table 266</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.2 &lt; ABS_Y_T1 &lt; 0.5) (<a href="115142?table=Table 267">Table 267</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (0.5 &lt; ABS_Y_T1 &lt; 1.0) (<a href="115142?table=Table 268">Table 268</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 (1.0 &lt; ABS_Y_T1 &lt; 2.0) (<a href="115142?table=Table 269">Table 269</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 270">Table 270</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 271">Table 271</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 272">Table 272</a>) <li>1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 273">Table 273</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.00 TeV &lt; PT_TTBAR &lt; 0.10 TeV) (<a href="115142?table=Table 274">Table 274</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.10 TeV &lt; PT_TTBAR &lt; 0.20 TeV) (<a href="115142?table=Table 275">Table 275</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.20 TeV &lt; PT_TTBAR &lt; 0.35 TeV) (<a href="115142?table=Table 276">Table 276</a>) <li>1/SIG*D2SIG/DM_TTBAR/PT_TTBAR (0.35 TeV &lt; PT_TTBAR &lt; 1.00 TeV) (<a href="115142?table=Table 277">Table 277</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.2) (<a href="115142?table=Table 278">Table 278</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.2 &lt; ABS_Y_TTBAR &lt; 0.5) (<a href="115142?table=Table 279">Table 279</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (0.5 &lt; ABS_Y_TTBAR &lt; 1.0) (<a href="115142?table=Table 280">Table 280</a>) <li>1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR (1.0 &lt; ABS_Y_TTBAR &lt; 2.0) (<a href="115142?table=Table 281">Table 281</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 666">Table 666</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 667">Table 667</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 668">Table 668</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 669">Table 669</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 670">Table 670</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 671">Table 671</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 672">Table 672</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 673">Table 673</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 674">Table 674</a>) <li>Matrix for D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 675">Table 675</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 676">Table 676</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 677">Table 677</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 678">Table 678</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 679">Table 679</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 680">Table 680</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 681">Table 681</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 682">Table 682</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 683">Table 683</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 684">Table 684</a>) <li>Matrix for D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 685">Table 685</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 686">Table 686</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 687">Table 687</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 688">Table 688</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 689">Table 689</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 690">Table 690</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 691">Table 691</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 692">Table 692</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 693">Table 693</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 694">Table 694</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 695">Table 695</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 696">Table 696</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 697">Table 697</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 698">Table 698</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 699">Table 699</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 700">Table 700</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 701">Table 701</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 702">Table 702</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 703">Table 703</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 704">Table 704</a>) <li>Matrix for D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 705">Table 705</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 706">Table 706</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 707">Table 707</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 708">Table 708</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 709">Table 709</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 710">Table 710</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 711">Table 711</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 712">Table 712</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 713">Table 713</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 714">Table 714</a>) <li>Matrix for D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 715">Table 715</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 716">Table 716</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 717">Table 717</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 718">Table 718</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 719">Table 719</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 720">Table 720</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 721">Table 721</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 722">Table 722</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 723">Table 723</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 724">Table 724</a>) <li>Matrix for D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 725">Table 725</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 726">Table 726</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 727">Table 727</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 728">Table 728</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 729">Table 729</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 730">Table 730</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 731">Table 731</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 732">Table 732</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 733">Table 733</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 734">Table 734</a>) <li>Matrix for D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 735">Table 735</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 736">Table 736</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 737">Table 737</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 738">Table 738</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 739">Table 739</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 740">Table 740</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 741">Table 741</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 742">Table 742</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 743">Table 743</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 744">Table 744</a>) <li>Matrix for D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 745">Table 745</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 746">Table 746</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 747">Table 747</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 748">Table 748</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 749">Table 749</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 750">Table 750</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 751">Table 751</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 752">Table 752</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 753">Table 753</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 754">Table 754</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 755">Table 755</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 756">Table 756</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 757">Table 757</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 758">Table 758</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 759">Table 759</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 760">Table 760</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 761">Table 761</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 762">Table 762</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 763">Table 763</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 764">Table 764</a>) <li>Matrix for D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 765">Table 765</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 766">Table 766</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 767">Table 767</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 768">Table 768</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 769">Table 769</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 770">Table 770</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 771">Table 771</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 772">Table 772</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 773">Table 773</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 774">Table 774</a>) <li>Matrix for D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 775">Table 775</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 776">Table 776</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 777">Table 777</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 778">Table 778</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 779">Table 779</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 780">Table 780</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 781">Table 781</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 782">Table 782</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 783">Table 783</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 784">Table 784</a>) <li>Matrix for D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 785">Table 785</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 846">Table 846</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 847">Table 847</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 848">Table 848</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 849">Table 849</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 850">Table 850</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 851">Table 851</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 852">Table 852</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 853">Table 853</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 854">Table 854</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 855">Table 855</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 856">Table 856</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 857">Table 857</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 858">Table 858</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 859">Table 859</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 860">Table 860</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 861">Table 861</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 862">Table 862</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 863">Table 863</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 864">Table 864</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T2/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 865">Table 865</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 866">Table 866</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 867">Table 867</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 868">Table 868</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 869">Table 869</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 870">Table 870</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 871">Table 871</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 872">Table 872</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 873">Table 873</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 874">Table 874</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 875">Table 875</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 1st bins of ABS_Y_T2 (<a href="115142?table=Table 876">Table 876</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 877">Table 877</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 878">Table 878</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 1st and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 879">Table 879</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 2nd bins of ABS_Y_T2 (<a href="115142?table=Table 880">Table 880</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 881">Table 881</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 2nd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 882">Table 882</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 3rd bins of ABS_Y_T2 (<a href="115142?table=Table 883">Table 883</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 3rd and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 884">Table 884</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T2/DABS_Y_T2 between the 4th and 4th bins of ABS_Y_T2 (<a href="115142?table=Table 885">Table 885</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 886">Table 886</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 887">Table 887</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 888">Table 888</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 889">Table 889</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 890">Table 890</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 891">Table 891</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 892">Table 892</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 893">Table 893</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 894">Table 894</a>) <li>Matrix for 1/SIG*D2SIG/DPT_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 895">Table 895</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 1st bins of PT_T1 (<a href="115142?table=Table 896">Table 896</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 2nd bins of PT_T1 (<a href="115142?table=Table 897">Table 897</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 3rd bins of PT_T1 (<a href="115142?table=Table 898">Table 898</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 1st and 4th bins of PT_T1 (<a href="115142?table=Table 899">Table 899</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 2nd bins of PT_T1 (<a href="115142?table=Table 900">Table 900</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 3rd bins of PT_T1 (<a href="115142?table=Table 901">Table 901</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 2nd and 4th bins of PT_T1 (<a href="115142?table=Table 902">Table 902</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 3rd bins of PT_T1 (<a href="115142?table=Table 903">Table 903</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 3rd and 4th bins of PT_T1 (<a href="115142?table=Table 904">Table 904</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DPT_T1 between the 4th and 4th bins of PT_T1 (<a href="115142?table=Table 905">Table 905</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 906">Table 906</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 907">Table 907</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 908">Table 908</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 909">Table 909</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 910">Table 910</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 911">Table 911</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 912">Table 912</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 913">Table 913</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 914">Table 914</a>) <li>Matrix for 1/SIG*D2SIG/DPT_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 915">Table 915</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 916">Table 916</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 917">Table 917</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 918">Table 918</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 919">Table 919</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 920">Table 920</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 921">Table 921</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 922">Table 922</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 923">Table 923</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 924">Table 924</a>) <li>Matrix for 1/SIG*D2SIG/DABS_Y_T1/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 925">Table 925</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 1st bins of ABS_Y_T1 (<a href="115142?table=Table 926">Table 926</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 927">Table 927</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 928">Table 928</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 1st and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 929">Table 929</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 2nd bins of ABS_Y_T1 (<a href="115142?table=Table 930">Table 930</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 931">Table 931</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 2nd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 932">Table 932</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 3rd bins of ABS_Y_T1 (<a href="115142?table=Table 933">Table 933</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 3rd and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 934">Table 934</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_T1 between the 4th and 4th bins of ABS_Y_T1 (<a href="115142?table=Table 935">Table 935</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 936">Table 936</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 937">Table 937</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 938">Table 938</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 939">Table 939</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 940">Table 940</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 941">Table 941</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 942">Table 942</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 943">Table 943</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 944">Table 944</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 945">Table 945</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 1st bins of PT_TTBAR (<a href="115142?table=Table 946">Table 946</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 2nd bins of PT_TTBAR (<a href="115142?table=Table 947">Table 947</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 3rd bins of PT_TTBAR (<a href="115142?table=Table 948">Table 948</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 1st and 4th bins of PT_TTBAR (<a href="115142?table=Table 949">Table 949</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 2nd bins of PT_TTBAR (<a href="115142?table=Table 950">Table 950</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 951">Table 951</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 2nd and 4th bins of PT_TTBAR (<a href="115142?table=Table 952">Table 952</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 3rd bins of PT_TTBAR (<a href="115142?table=Table 953">Table 953</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 3rd and 4th bins of PT_TTBAR (<a href="115142?table=Table 954">Table 954</a>) <li>Matrix for 1/SIG*D2SIG/DM_TTBAR/PT_TTBAR between the 4th and 4th bins of PT_TTBAR (<a href="115142?table=Table 955">Table 955</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 1st bins of ABS_Y_TTBAR (<a href="115142?table=Table 956">Table 956</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 957">Table 957</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 958">Table 958</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 1st and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 959">Table 959</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 2nd bins of ABS_Y_TTBAR (<a href="115142?table=Table 960">Table 960</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 961">Table 961</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 2nd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 962">Table 962</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 3rd bins of ABS_Y_TTBAR (<a href="115142?table=Table 963">Table 963</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 3rd and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 964">Table 964</a>) <li>Matrix for 1/SIG*D2SIG/PT_TTBAR/DABS_Y_TTBAR between the 4th and 4th bins of ABS_Y_TTBAR (<a href="115142?table=Table 965">Table 965</a>) </ul><br/> <u>3D:</u><br/> Spectra: <ul><br/> <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 210">Table 210</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 211">Table 211</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 212">Table 212</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 213">Table 213</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 214">Table 214</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 215">Table 215</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 216">Table 216</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 217">Table 217</a>) <li>D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 218">Table 218</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 282">Table 282</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 283">Table 283</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.0 &lt; ABS_Y_TTBAR &lt; 0.3, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 284">Table 284</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 285">Table 285</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 286">Table 286</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.3 &lt; ABS_Y_TTBAR &lt; 0.9, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 287">Table 287</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 0.9 TeV &lt; M_TTBAR &lt; 1.2 TeV) (<a href="115142?table=Table 288">Table 288</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.2 TeV &lt; M_TTBAR &lt; 1.5 TeV) (<a href="115142?table=Table 289">Table 289</a>) <li>1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR (0.9 &lt; ABS_Y_TTBAR &lt; 2.0, 1.5 TeV &lt; M_TTBAR &lt; 4.0 TeV) (<a href="115142?table=Table 290">Table 290</a>) </ul><br/> Covariances: <ul><br/> <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 786">Table 786</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 787">Table 787</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 788">Table 788</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 789">Table 789</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 790">Table 790</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 791">Table 791</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 792">Table 792</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 793">Table 793</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 794">Table 794</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 795">Table 795</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 796">Table 796</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 797">Table 797</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 798">Table 798</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 799">Table 799</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 800">Table 800</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 801">Table 801</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 802">Table 802</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 803">Table 803</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 804">Table 804</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 805">Table 805</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 806">Table 806</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 807">Table 807</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 808">Table 808</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 809">Table 809</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 810">Table 810</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 811">Table 811</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 812">Table 812</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 813">Table 813</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 814">Table 814</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 815">Table 815</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 816">Table 816</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 817">Table 817</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 818">Table 818</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 819">Table 819</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 820">Table 820</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 821">Table 821</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 822">Table 822</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 823">Table 823</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 824">Table 824</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 825">Table 825</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 826">Table 826</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 827">Table 827</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 828">Table 828</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 829">Table 829</a>) <li>Matrix for D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 830">Table 830</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 966">Table 966</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 967">Table 967</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 968">Table 968</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 969">Table 969</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 970">Table 970</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 971">Table 971</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 972">Table 972</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 973">Table 973</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 974">Table 974</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 975">Table 975</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 976">Table 976</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 977">Table 977</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 978">Table 978</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 979">Table 979</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 980">Table 980</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 981">Table 981</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 982">Table 982</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 983">Table 983</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 984">Table 984</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 985">Table 985</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 986">Table 986</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 987">Table 987</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 988">Table 988</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (1st, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 989">Table 989</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 990">Table 990</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 991">Table 991</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 992">Table 992</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 993">Table 993</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 994">Table 994</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 995">Table 995</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 996">Table 996</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 997">Table 997</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 998">Table 998</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 999">Table 999</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1000">Table 1000</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1001">Table 1001</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1002">Table 1002</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1003">Table 1003</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (2nd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1004">Table 1004</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1005">Table 1005</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1006">Table 1006</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 1st) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1007">Table 1007</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1008">Table 1008</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 2nd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1009">Table 1009</a>) <li>Matrix for 1/SIG*D3SIG/DPT_T1/DABS_Y_TTBAR/DM_TTBAR between the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) and the (3rd, 3rd) bin of (ABS_Y_TTBAR, M_TTBAR) (<a href="115142?table=Table 1010">Table 1010</a>) </ul><br/>

Fiducial phase-space cross-section at particle level.

$p_{T}^{t}$ absolute differential cross-section at particle level.

More…

Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

16 data tables

Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).

More…

Version 2
Measurement of the $t\bar{t}$ production cross-section in the lepton+jets channel at $\sqrt{s}=13\;$TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 810 (2020) 135797, 2020.
Inspire Record 1802524 DOI 10.17182/hepdata.95748

The $t\bar{t}$ production cross-section is measured in the lepton+jets channel using proton$-$proton collision data at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one charged lepton and four or more jets in the final state, with at least one jet containing $b$-hadrons, are used to determine the $t\bar{t}$ production cross-section through a profile-likelihood fit. The inclusive cross-section is measured to be ${\sigma_{\text{inc}} = 830 \pm 0.4~ \text{(stat.)}\pm 36~\text{(syst.)}\pm 14~\text{(lumi.)}~\mathrm{pb}}$ with a relative uncertainty of 4.6 %. The result is consistent with theoretical calculations at next-to-next-to-leading order in perturbative QCD. The fiducial $t\bar{t}$ cross-section within the experimental acceptance is also measured.

10 data tables

The results of fitted inclusive and fiducial ${t\bar{t}}$ cross-sections

The results of fitted inclusive and fiducial ${t\bar{t}}$ cross-sections

Ranking of the systematic uncertainties on the measured cross-section, normalised to the predicted value, in the inclusive fit to data. The impact of each nuisance parameter, $\Delta \sigma_{\text{inc}}/\sigma^{\text{pred.}}_{\text{inc}}$, is computed by comparing the nominal best-fit value of $\sigma_{\text{inc}}/\sigma^{\text{pred}}_{\text{inc}}$ with the result of the fit when fixing the considered nuisance parameter to its best-fit value, $\theta$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta \theta$ ($\pm \Delta \hat{\theta}$). The figure shows the effect of the ten most significant uncertainties.

More…

Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

22 data tables

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$-boson mass in ${\sqrt{s}=13\,}$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 031, 2023.
Inspire Record 2157951 DOI 10.17182/hepdata.134068

A search for the electroweak production of pairs of charged sleptons or charginos decaying into two-lepton final states with missing transverse momentum is presented. Two simplified models of $R$-parity-conserving supersymmetry are considered: direct pair-production of sleptons ($\tilde{\ell}\tilde{\ell}$), with each decaying into a charged lepton and a $\tilde{\chi}_1^0$ neutralino, and direct pair-production of the lightest charginos $(\tilde{\chi}_1^\pm\tilde{\chi}_1^\mp)$, with each decaying into a $W$-boson and a $\tilde{\chi}_1^0$. The lightest neutralino ($\tilde{\chi}_1^0$) is assumed to be the lightest supersymmetric particle (LSP). The analyses target the experimentally challenging mass regions where $m(\tilde{\ell})-m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)$ are close to the $W$-boson mass (`moderately compressed' regions). The search uses 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant excesses over the expected background are observed. Exclusion limits on the simplified models under study are reported in the ($\tilde{\ell},\tilde{\chi}_1^0$) and ($\tilde{\chi}_1^\pm,\tilde{\chi}_1^0$) mass planes at 95% confidence level (CL). Sleptons with masses up to 150 GeV are excluded at 95% CL for the case of a mass-splitting between sleptons and the LSP of 50 GeV. Chargino masses up to 140 GeV are excluded at 95% CL for the case of a mass-splitting between the chargino and the LSP down to about 100 GeV.

176 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Title: </b><em>Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the $W$ boson mass in $\sqrt{s}=13$ TeV $pp$ collisions with the ATLAS detector</em> <b>Paper website:</b> <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-02/">SUSY-2019-02</a> <b>Exclusion contours</b> <ul><li><b>Sleptons:</b> <a href=?table=excl_comb_obs_nominal>Combined Observed Nominal</a> <a href=?table=excl_comb_obs_up>Combined Observed Up</a> <a href=?table=excl_comb_obs_down>Combined Observed Down</a> <a href=?table=excl_comb_exp_nominal>Combined Expected Nominal</a> <a href=?table=excl_comb_exp_up>Combined Expected Up</a> <a href=?table=excl_comb_exp_down>Combined Expected Down</a> <a href=?table=excl_comb_obs_nominal_dM>Combined Observed Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_up_dM>Combined Observed Up $(\Delta m)$</a> <a href=?table=excl_comb_obs_down_dM>Combined Observed Down $(\Delta m)$</a> <a href=?table=excl_comb_exp_nominal_dM>Combined Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_exp_up_dM>Combined Expected Up $(\Delta m)$</a> <a href=?table=excl_comb_exp_down_dM>Combined Expected Down $(\Delta m)$</a> <a href=?table=excl_ee_obs_nominal>$\tilde{e}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_ee_exp_nominal>$\tilde{e}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_eLeL_obs_nominal>$\tilde{e}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_eLeL_exp_nominal>$\tilde{e}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_eReR_obs_nominal>$\tilde{e}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_eReR_exp_nominal>$\tilde{e}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_ee_obs_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_ee_exp_nominal_dM>$\tilde{e}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_obs_nominal_dM>$\tilde{e}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eLeL_exp_nominal_dM>$\tilde{e}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_obs_nominal_dM>$\tilde{e}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_eReR_exp_nominal_dM>$\tilde{e}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mm_obs_nominal>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal</a> <a href=?table=excl_mm_exp_nominal>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal</a> <a href=?table=excl_mLmL_obs_nominal>$\tilde{\mu}_\mathrm{L}$ Observed Nominal</a> <a href=?table=excl_mLmL_exp_nominal>$\tilde{\mu}_\mathrm{L}$ Expected Nominal</a> <a href=?table=excl_mRmR_obs_nominal>$\tilde{\mu}_\mathrm{R}$ Observed Nominal</a> <a href=?table=excl_mRmR_exp_nominal>$\tilde{\mu}_\mathrm{R}$ Expected Nominal</a> <a href=?table=excl_mm_obs_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mm_exp_nominal_dM>$\tilde{\mu}_\mathrm{L,R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_obs_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mLmL_exp_nominal_dM>$\tilde{\mu}_\mathrm{L}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_obs_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Observed Nominal $(\Delta m)$</a> <a href=?table=excl_mRmR_exp_nominal_dM>$\tilde{\mu}_\mathrm{R}$ Expected Nominal $(\Delta m)$</a> <a href=?table=excl_comb_obs_nominal_SR0j>Combined Observed Nominal SR-0j</a> <a href=?table=excl_comb_exp_nominal_SR0j>Combined Expected Nominal SR-0j</a> <a href=?table=excl_comb_obs_nominal_SR1j>Combined Observed Nominal SR-1j</a> <a href=?table=excl_comb_exp_nominal_SR1j>Combined Expected Nominal SR-1j</a> <li><b>Charginos:</b> <a href=?table=excl_c1c1_obs_nominal>Observed Nominal</a> <a href=?table=excl_c1c1_obs_up>Observed Up</a> <a href=?table=excl_c1c1_obs_down>Observed Down</a> <a href=?table=excl_c1c1_exp_nominal>Expected Nominal</a> <a href=?table=excl_c1c1_exp_nominal>Expected Up</a> <a href=?table=excl_c1c1_exp_nominal>Expected Down</a> <a href=?table=excl_c1c1_obs_nominal_dM>Observed Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_up_dM>Observed Up $(\Delta m)$</a> <a href=?table=excl_c1c1_obs_down_dM>Observed Down $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Nominal $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Up $(\Delta m)$</a> <a href=?table=excl_c1c1_exp_nominal_dM>Expected Down $(\Delta m)$</a> </ul> <b>Upper Limits</b> <ul><li><b>Sleptons:</b> <a href=?table=UL_slep>ULs</a> <li><b>Charginos:</b> <a href=?table=UL_c1c1>ULs</a> </ul> <b>Pull Plots</b> <ul><li><b>Sleptons:</b> <a href=?table=pullplot_slep>SRs summary plot</a> <li><b>Charginos:</b> <a href=?table=pullplot_c1c1>SRs summary plot</a> </ul> <b>Cutflows</b> <ul><li><b>Sleptons:</b> <a href=?table=Cutflow_slep_SR0j>Towards SR-0J</a> <a href=?table=Cutflow_slep_SR1j>Towards SR-1J</a> <li><b>Charginos:</b> <a href=?table=Cutflow_SRs>Towards SRs</a> </ul> <b>Acceptance and Efficiencies</b> <ul><li><b>Sleptons:</b> <a href=?table=Acceptance_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_120_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_100_105>SR-0J $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_105_110>SR-0J $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_110_115>SR-0J $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_115_120>SR-0J $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_120_125>SR-0J $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_125_130>SR-0J $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_130_140>SR-0J $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR0j_MT2_140_infty>SR-0J $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[100,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[110,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_120_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[120,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[130,\infty)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_100_105>SR-1j $m_{\mathrm{T2}}^{100} \in[100,105)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_105_110>SR-1j $m_{\mathrm{T2}}^{100} \in[105,110)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_110_115>SR-1j $m_{\mathrm{T2}}^{100} \in[110,115)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_115_120>SR-1j $m_{\mathrm{T2}}^{100} \in[115,120)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_120_125>SR-1j $m_{\mathrm{T2}}^{100} \in[120,125)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_125_130>SR-1j $m_{\mathrm{T2}}^{100} \in[125,130)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_130_140>SR-1j $m_{\mathrm{T2}}^{100} \in[130,140)$ Efficiency</a> <a href=?table=Acceptance_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Acceptance</a> <a href=?table=Efficiency_SR1j_MT2_140_infty>SR-1j $m_{\mathrm{T2}}^{100} \in[140,\infty)$ Efficiency</a> <li><b>Charginos:</b> <a href=?table=Acceptance_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1_SF_77_1>SR$^{\text{-DF BDT-signal}\in(0.81,1]}_{\text{-SF BDT-signal}\in(0.77,1]}$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_1>SR-DF BDT-signal$\in(0.81,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_1>SR-DF BDT-signal$\in(0.82,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_1>SR-DF BDT-signal$\in(0.83,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_1>SR-DF BDT-signal$\in(0.84,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_1>SR-DF BDT-signal$\in(0.85,1]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_81_8125>SR-DF BDT-signal$\in(0.81,8125]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8125_815>SR-DF BDT-signal$\in(0.8125,815]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_815_8175>SR-DF BDT-signal$\in(0.815,8175]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8175_82>SR-DF BDT-signal$\in(0.8175,82]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_82_8225>SR-DF BDT-signal$\in(0.82,8225]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8225_825>SR-DF BDT-signal$\in(0.8225,825]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_825_8275>SR-DF BDT-signal$\in(0.825,8275]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8275_83>SR-DF BDT-signal$\in(0.8275,83]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_83_8325>SR-DF BDT-signal$\in(0.83,8325]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8325_835>SR-DF BDT-signal$\in(0.8325,835]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_835_8375>SR-DF BDT-signal$\in(0.835,8375]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_8375_84>SR-DF BDT-signal$\in(0.8375,84]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_84_845>SR-DF BDT-signal$\in(0.85,845]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_845_85>SR-DF BDT-signal$\in(0.845,85]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_85_86>SR-DF BDT-signal$\in(0.85,86]$ Efficiency</a> <a href=?table=Acceptance_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Acceptance</a> <a href=?table=Efficiency_SR_DF_86_1>SR-DF BDT-signal$\in(0.86,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_1>SR-SF BDT-signal$\in(0.77,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_1>SR-SF BDT-signal$\in(0.78,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_1>SR-SF BDT-signal$\in(0.79,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_1>SR-SF BDT-signal$\in(0.80,1]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_77_775>SR-SF BDT-signal$\in(0.77,0.775]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_775_78>SR-SF BDT-signal$\in(0.775,0.78]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_78_785>SR-SF BDT-signal$\in(0.78,0.785]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_785_79>SR-SF BDT-signal$\in(0.785,0.79]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_79_795>SR-SF BDT-signal$\in(0.79,0.795]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_795_80>SR-SF BDT-signal$\in(0.795,0.80]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_80_81>SR-SF BDT-signal$\in(0.80,0.81]$ Efficiency</a> <a href=?table=Acceptance_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Acceptance</a> <a href=?table=Efficiency_SR_SF_81_1>SR-SF BDT-signal$\in(0.81,1]$ Efficiency</a></ul> <b>Truth Code snippets</b>, <b>SLHA</b> and <b>machine learning</b> files are available under "Resources" (purple button on the left)

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

The figure shows the signal acceptance (a) and efficiency (b) plots for the slepton pair production model, in the SR-0J $m_{\mathrm{T2}}^{100} \in[100,\infty)$ region. Acceptance is calculated by applying the signal region requirements to particle-level objects, which do not suffer from identification inefficiencies or mismeasurements. The efficiency is calculated with fully reconstructed objects with the acceptance divided out. Large acceptance and efficiency differences in neighbouring points are due to statistical fluctuations.

More…

Measurement of energy flow, cross section and average inelasticity of forward neutrons produced in $\mathrm{\sqrt{s} = 13 TeV}$ proton-proton collisions with the LHCf Arm2 detector

The LHCf collaboration Adriani, O. ; Berti, E. ; Bonechi, L. ; et al.
JHEP 07 (2020) 016, 2020.
Inspire Record 1783943 DOI 10.17182/hepdata.130268

In this paper, we report the measurement of the energy flow, the cross section and the average inelasticity of forward neutrons (+ antineutrons) produced in $\sqrt{s} = 13$ TeV proton-proton collisions. These quantities are obtained from the inclusive differential production cross section, measured using the LHCf Arm2 detector at the CERN Large Hadron Collider. The measurements are performed in six pseudorapidity regions: three of them ($\eta > 10.75$, $8.99 < \eta < 9.21$ and $8.80 < \eta < 8.99$), albeit with smaller acceptance and larger uncertainties, were already published in a previous work, whereas the remaining three ($10.06 < \eta < 10.75$, $9.65 < \eta < 10.06$ and $8.65 < \eta < 8.80$) are presented here for the first time. The analysis was carried out using a data set acquired in June 2015 with a corresponding integrated luminosity of $\mathrm{0.194~nb^{-1}}$. Comparing the experimental measurements with the expectations of several hadronic interaction models used to simulate cosmic ray air showers, none of these generators resulted to have a satisfactory agreement in all the phase space selected for the analysis. The inclusive differential production cross section for $\eta > 10.75$ is not reproduced by any model, whereas the results still indicate a significant but less serious deviation at lower pseudorapidities. Depending on the pseudorapidity region, the generators showing the best overall agreement with data are either SIBYLL 2.3 or EPOS-LHC. Furthermore, apart from the most forward region, the derived energy flow and cross section distributions are best reproduced by EPOS-LHC. Finally, even if none of the models describe the elasticity distribution in a satisfactory way, the extracted average inelasticity is consistent with the QGSJET II-04 value, while most of the other generators give values that lie just outside the experimental uncertainties.

9 data tables

Neutron (and antineutron) inclusive differential production cross section in $\eta > 10.75$

Neutron (and antineutron) inclusive differential production cross section in $10.06 < \eta < 10.75$

Neutron (and antineutron) inclusive differential production cross section in $9.65 < \eta < 10.06$

More…

Measurement of differential cross sections for the production of a Z boson in association with jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 108 (2023) 052004, 2023.
Inspire Record 2078067 DOI 10.17182/hepdata.115655

A measurement is presented of the production of Z bosons that decay into two electrons or muons in association with jets, in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded by the CMS Collaboration at the LHC with an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are measured as a function of the transverse momentum ($p_\mathrm{T}$) of the Z boson and the transverse momentum and rapidities of the five jets with largest $p_\mathrm{T}$. The jet multiplicity distribution is measured for up to eight jets. The hadronic activity in the events is estimated using the scalar sum of the $p_\mathrm{T}$ of all the jets. All measurements are unfolded to the stable particle-level and compared with predictions from various Monte Carlo event generators, as well as with expectations at leading and next-to-leading orders in perturbative quantum chromodynamics.

70 data tables

Measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section as a function of the rapidity absolute value of the first jet, $|y(\text{j}_1)|$, and breakdown of the relative uncertainty.

More…

Version 2
Beauty production in pp collisions at $\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 738 (2014) 97-108, 2014.
Inspire Record 1296861 DOI 10.17182/hepdata.858

The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1<p_{\mathrm{T}}<10$ GeV/$c$, in pp collisions at $\sqrt{s} = $ 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\sigma_{\mathrm{b} \rightarrow \mathrm{e}} = 3.47\pm0.40(\mathrm{stat})^{+1.12}_{-1.33}(\mathrm{sys})\pm0.07(\mathrm{norm}) \mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) predictions to obtain the total b$\bar{\mathrm{b}}$ production cross section, $\sigma_{\mathrm{b\bar{b}}} = 130\pm15.1(\mathrm{stat})^{+42.1}_{-49.8}(\mathrm{sys})^{+3.4}_{-3.1}(\mathrm{extr})\pm2.5(\mathrm{norm})\pm4.4(\mathrm{BR}) \mu$b.

16 data tables

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/$c$.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in minimum bias triggered events in the electron transverse momentum range 1.5-2.5 GeV/c.

Azimuthal correlation distribution between heavy-flavour decay electrons and charged hadrons, scaled by the number of electrons in EMCal triggered events in the electron transverse momentum range 4.5-6 GeV/$c$.

More…

Measurements of the differential production cross sections for a Z boson in association with jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 022, 2017.
Inspire Record 1497519 DOI 10.17182/hepdata.128149

Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 inverse femtobarns. Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.

128 data tables

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the the cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the 1$^\text{st}$ jet $p_{\text{T}}$, $p_{\text{T}}(\text{j}_1)$, and breakdown of the relative uncertainty.

More…

Observation and measurement of forward proton scattering in association with lepton pairs produced via the photon fusion mechanism at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 261801, 2020.
Inspire Record 1820312 DOI 10.17182/hepdata.116547

The observation of forward proton scattering in association with lepton pairs ($e^+e^-+p$ or $\mu^+\mu^-+p$) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of $\sqrt{s} = 13$ TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 57 (123) candidates in the $ee+p$ ($\mu\mu+p$) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding five standard deviations in each channel. Proton-tagging techniques are introduced for cross-section measurements in the fiducial detector acceptance, corresponding to $\sigma_{ee+p}$ = 11.0 $\pm$ 2.6 (stat.) $\pm$ 1.2 (syst.) $\pm$ 0.3 (lumi.) fb and $\sigma_{\mu\mu+p}$ = 7.2 $\pm$ 1.6 (stat.) $\pm$ 0.9 (syst.) $\pm$ 0.2 (lumi.) fb in the dielectron and dimuon channel, respectively.

1 data table

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity


Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at $\sqrt{s} =$ 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
Phys.Lett.B 819 (2021) 136412, 2021.
Inspire Record 1852325 DOI 10.17182/hepdata.102955

A search for the Higgs boson decaying into a photon and a pair of electrons or muons with an invariant mass $m_{\ell\ell} < 30$ GeV is presented. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data, produced by the LHC at a centre-of-mass energy of 13 TeV and collected by the ATLAS experiment. Evidence for the $H \rightarrow \ell \ell \gamma$ process is found with a significance of 3.2$\sigma$ over the background-only hypothesis, compared to an expected significance of 2.1$\sigma$. The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the Standard Model, is $\mu = 1.5 \pm 0.5$. The Higgs boson production cross-section times the $H \rightarrow\ell\ell\gamma$ branching ratio for $m_{\ell\ell} <$ 30 GeV is determined to be 8.7 $^{+2.8}_{-2.7}$ fb.

3 data tables

Number of data events selected in each analysis category in the $m_{\ell\ell\gamma}$ mass range of 110--160 GeV. In addition, the following numbers are given: number of $H\rightarrow\gamma^{*}\gamma\rightarrow \ell\ell\gamma$ events in the smallest $m_{\ell\ell\gamma}$ window containing 90\% of the expected signal ($S_{90}$), the non-resonant background in the same interval ($B_{90}^N$) as estimated from fits to the data sidebands using the background models, the resonant background in the same interval ($B_{H\rightarrow\gamma\gamma}$), the expected signal purity $f_{90} = S_{90}/(S_{90}+B_{90})$, and the expected significance estimate defined as $Z_{90} = \sqrt{ 2( (S_{90}+B_{90})\,\ln(1+S_{90}/B_{90}) - S_{90}) }$ where $B_{90} = B_{90}^N+B_{H\rightarrow\gamma\gamma}$. $B_{H\rightarrow\gamma\gamma}$ is only relevant for the electron categories and is marked as 0 otherwise

The best fit value for the signal yield normalised to the Standard Model prediction (signal strength) for $pp \to H \to Z+\gamma$

Measured $\sigma( p p \rightarrow H) \cdot B(H\rightarrow \ell\ell\gamma)$ for $m_{\ell\ell} < 30$ GeV


Search for resonances decaying to three W bosons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 129 (2022) 021802, 2022.
Inspire Record 2015402 DOI 10.17182/hepdata.102646

A search for resonances decaying into a W boson and a radion, where the radion decays into two W bosons, is presented. The data analyzed correspond to an integrated luminosity of 138 fb$^{-1}$ recorded in proton-proton collisions with the CMS detector at $\sqrt{s} =$ 13 TeV. One isolated charged lepton is required, together with missing transverse momentum and one or two massive large-radius jets, containing the decay products of either two or one W bosons, respectively. No excess over the background estimation is observed. The results are combined with those from a complementary channel with an all-hadronic final state, described in an accompanying paper. Limits are set on parameters of an extended warped extra-dimensional model. These searches are the first of their kind at the LHC.

11 data tables

Post-fit distributions of the reconstructed $\ell\nu$+jets system ($m_{\mathrm{j}\ell\nu}$, $m_{\mathrm{jj}\ell\nu}$) in data and simulation for SR4.

Observed upper limits at 95\% \CL on the signal cross section $\times$ branching fraction as functions of the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ resonance masses after combinign with an analysis of the all-hadronic final state.

Expected median lower limit contour on the $m_{\mathrm{W}_{\mathrm{KK}}}$ and $m_{\mathrm{R}}$ plane after combinign with an analysis of the all-hadronic final state.

More…

Search for resonances decaying to three W bosons in the hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 106 (2022) 012002, 2022.
Inspire Record 2000816 DOI 10.17182/hepdata.115182

A search for Kaluza-Klein excited vector boson resonances, $W_\mathrm{KK}$, decaying in cascade to three W bosons via a scalar radion $R, W_\mathrm{KK}\to WR \to WWW$, with two or three massive jets is presented. The search is performed with proton-proton collision data recorded at $\sqrt{s} =$ 13 TeV, collected by the CMS experiment at the CERN LHC, during 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Two final states are simultaneously probed, one where the two W bosons produced by the R decay are reconstructed as separate, large-radius, massive jets, and one where they are merged in a single large-radius jet. The observed data are in agreement with the standard model expectations. Limits are set on the product of the $W_\mathrm{KK}$ resonance cross section and branching fraction to three W bosons in an extended warped extra-dimensional model and are the first of their kind at the LHC.

38 data tables

Distribution of $m_{\mathrm{jj}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of $m_{\mathrm{j}}$ for preselected events with $\mathrm{N}_{j}$ = 2

Distribution of the deep-WH value of the highest-mass jet with $m_{\mathrm{j}}$ > 100 GeV for preselected events with $\mathrm{N}_{j}$ = 2

More…

Version 3
Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 616, 2020.
Inspire Record 1768911 DOI 10.17182/hepdata.92377

This paper describes precision measurements of the transverse momentum $p_\mathrm{T}^{\ell\ell}$ ($\ell=e,\mu$) and of the angular variable $\phi^{*}_{\eta}$ distributions of Drell-Yan lepton pairs in a mass range of 66-116 GeV. The analysis uses data from 36.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the LHC in 2015 and 2016. Measurements in electron-pair and muon-pair final states are performed in the same fiducial volumes, corrected for detector effects, and combined. Compared to previous measurements in proton-proton collisions at $\sqrt{s}=$7 and 8 TeV, these new measurements probe perturbative QCD at a higher centre-of-mass energy with a different composition of initial states. They reach a precision of 0.2% for the normalized spectra at low values of $p_\mathrm{T}^{\ell\ell}$. The data are compared with different QCD predictions, where it is found that predictions based on resummation approaches can describe the full spectrum within uncertainties.

80 data tables

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

Selected signal candidate events in data for both decay channels as well as the expected background contributions including their total uncertainties.

More…

Observation of tW production in the single-lepton channel in pp collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 11 (2021) 111, 2021.
Inspire Record 1917152 DOI 10.17182/hepdata.102957

A measurement of the cross section of the associated production of a single top quark and a W boson in final states with a muon or electron and jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV is presented. The data correspond to an integrated luminosity of 36 fb$^{-1}$ collected with the CMS detector at the CERN LHC in 2016. A boosted decision tree is used to separate the tW signal from the dominant $\mathrm{t\bar{t}}$ background, whilst the subleading W+jets and multijet backgrounds are constrained using data-based estimates. This result is the first observation of the tW process in final states containing a muon or electron and jets, with a significance exceeding 5 standard deviations. The cross section is determined to be 89 $\pm$ 4 (stat) $\pm$ 12 (syst) pb, consistent with the standard model.

2 data tables

The observed and theoretical cross section. In the observed, the first uncertainty is statistical, the second uncertianty is the systematic. In the expected, the first uncertainty is due to scale variations, the second due to the choice of PDF.

The systematic sources considered in the analysis and their relative contribution to the observed uncertainty. The uncertainties are divided by normalization, experimental, theoretical and statistical uncertainties, with each section ordered by their contribution to the total uncertainty.


$\Upsilon$ production and nuclear modification at forward rapidity in Pb-Pb collisions at $\mathbf{\sqrt{\textit{s}_{\textbf{NN}}}=5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 822 (2021) 136579, 2021.
Inspire Record 1829413 DOI 10.17182/hepdata.114190

The production of $\Upsilon$ mesons in Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}$ = 5 TeV is measured with the muon spectrometer of the ALICE detector at the LHC. The yields as well as the nuclear modification factors are determined in the forward rapidity region $2.5<y<4.0$, as a function of rapidity, transverse momentum and collision centrality. The results show that the production of the $\Upsilon$(1S) meson is suppressed by a factor of about three with respect to the production in proton-proton collisions. For the first time, a significant signal for the $\Upsilon$(2S) meson is observed at forward rapidity, indicating a suppression stronger by about a factor 2-3 with respect to the ground state. The measurements are compared with transport, hydrodynamic, comover and statistical hadronisation model calculations.

14 data tables

Rapidity-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

Rapidity-differential yield of $\Upsilon(2\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

$p_{\mathrm{T}}$-differential yield of $\Upsilon(1\mathrm{S}) \rightarrow \mu^{+}\mu^{-}$ divided by the average nuclear overlap function $\langle T_{\mathrm{AA}} \rangle$ for the 0–90% centrality interval ($\langle T_{\mathrm{AA}} \rangle$ = 6.28 $\pm$ 0.06 mb$^{-1}$).

More…

Measurement of the electroweak production of Z$\gamma$ and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 072001, 2021.
Inspire Record 1869513 DOI 10.17182/hepdata.102954

The first observation of the electroweak (EW) production of a Z boson, a photon, and two forward jets (Z$\gamma$jj) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. A data set corresponding to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC in 2016-2018 is used. The measured fiducial cross section for EW Z$\gamma$jj is $\sigma_{\mathrm{EW}}$ = 5.21 $\pm$ 0.52 (stat) $\pm$ 0.56 (syst) fb = 5.21 $\pm$ 0.76 fb. Single-differential cross sections in photon, leading lepton, and leading jet transverse momenta, and double-differential cross sections in $m_{\mathrm{jj}}$ and $\lvert\Delta\eta_{\mathrm{jj}}\rvert$ are also measured. Exclusion limits on anomalous quartic gauge couplings are derived at 95% confidence level in terms of the effective field theory operators $\mathrm{M}_{0}$ to $\mathrm{M}_{5}$, $\mathrm{M}_{7}$, $\mathrm{T}_{0}$ to $\mathrm{T}_{2}$, and $\mathrm{T}_{5}$ to $\mathrm{T}_{9}$.

11 data tables

The measured inclusive fiducial cross section for the pure electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.

The measured inclusive fiducial cross section for the combined QCD-induced and electroweak Z$\gamma$jj production. The uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO.

The measured single-differential cross sections in photon transverse momenta for the pure electroweak Z$\gamma$jj production. The total uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO. The last bin includes overflow events.

More…

Search for heavy particles in the $b$-tagged dijet mass distribution with additional $b$-tagged jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 105 (2022) 012001, 2022.
Inspire Record 1909506 DOI 10.17182/hepdata.111056

A search optimized for new heavy particles decaying to two $b$-quarks and produced in association with additional $b$-quarks is reported. The sensitivity is improved by $b$-tagging at least one lower-$p_{\rm{T}}$ jet in addition to the two highest-$p_{\rm{T}}$ jets. The data used in this search correspond to an integrated luminosity of 103 $\text{fb}^{-1}$ collected with a dedicated trijet trigger during the 2017 and 2018 $\sqrt{s} = 13$ TeV proton-proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the $b$-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed $b$-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of $b$-quarks are derived.

4 data tables

Background estimate from the FD method with N=3 and data in the SR.

The observed (solid) and expected (dashed) 95% CL upper limits on the production of $Z' \to b\bar{b}$ in association with b-quarks.

Acceptance and Acceptance times efficiency for the LUV Z' model.

More…

Version 2
Measurement of the $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ production cross section in the all-jet final state in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 803 (2020) 135285, 2020.
Inspire Record 1753720 DOI 10.17182/hepdata.91630

A measurement of the production cross section of top quark pairs in association with two b jets ($\mathrm{t\bar{t}}\mathrm{b\bar{b}}$) is presented using data collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS detector at the LHC corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The cross section is measured in the all-jet decay channel of the top quark pair by selecting events containing at least eight jets, of which at least two are identified as originating from the hadronization of b quarks. A combination of multivariate analysis techniques is used to reduce the large background from multijet events not containing a top quark pair, and to help discriminate between jets originating from top quark decays and other additional jets. The cross section is determined for the total phase space to be 5.5 $\pm$ 0.3 (stat)${}^{+1.6}_{-1.3}$ (syst) pb and also measured for two fiducial $\mathrm{t\bar{t}}\mathrm{b\bar{b}}$ definitions. The measured cross sections are found to be larger than theoretical predictions by a factor of 1.5-2.4, corresponding to 1-2 standard deviations.

2 data tables

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.

The measured cross sections. The first uncertainty is statistical, the second uncertianty is the systematic.


Measurement of the $t\bar{t}t\bar{t}$ production cross section in $pp$ collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 11 (2021) 118, 2021.
Inspire Record 1869695 DOI 10.17182/hepdata.105039

A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.

76 data tables

The results of the fitted signal strength $\mu$ in the 1L/2LOS channel

The results of fitted inclusive ${t\bar{t}t\bar{t}}$ cross-section in the 1L/2LOS channel

Ranking of the nuisance parameters included in the fit according to their impact on the signal strength $\mu$. The impact of each nuisance parameter, $\Delta\mu$, is computed by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the nuisance parameter to its best-fit value, $\hat{\theta}$, shifted by its pre-fit (post-fit) uncertainties $\pm \Delta\theta$ ($\pm \Delta\hat{\theta}$).

More…

Version 2
Comprehensive measurements of $t$-channel single top-quark production cross sections at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112006, 2014.
Inspire Record 1303905 DOI 10.17182/hepdata.64385

This article presents measurements of the $t$-channel single top-quark ($t$) and top-antiquark ($\bar{t}$) total production cross sections $\sigma(tq)$ and $\sigma(\bar{t}q)$, their ratio $R_{t}=\sigma(tq)/\sigma(\bar{t}q)$, and a measurement of the inclusive production cross section $\sigma(tq + \bar{t}q)$ in proton--proton collisions at $\sqrt{s} = 7$ TeV at the LHC. Differential cross sections for the $tq$ and $\bar{t}q$ processes are measured as a function of the transverse momentum and the absolute value of the rapidity of $t$ and $\bar{t}$, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb$^{-1}$. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are $\sigma(tq)= 46\pm 6\; \mathrm{pb}$, $\sigma(\bar{t}q)= 23 \pm 4\; \mathrm{pb}$, $R_{t}=2.04\pm 0.18$, and $\sigma(tq + \bar{t}q)= 68 \pm 8\; \mathrm{pb}$, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on $R_{t}$ is mainly statistical. Using the ratio of $\sigma(tq + \bar{t}q)$ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation $|V_{tb}|\gg |V_{ts}|, |V_{td}|$, we determine $|V_{tb}|=1.02 \pm 0.07$.

40 data tables

Differential t-channel top-quark production cross sections and normalized differential t-channel top-quark production cross sections as functions of PT(TOP).

Predicted and observed events yields for the 2-jet and 3-jet channels considered in this measurement. The multijet background is estimated using data-driven techniques (see Sec. VB); an uncertainty of $50\%$ is applied. All the other expectations are derived using theoretical cross sections and their uncertainties (see Secs. VA and VC in the paper).

Differential t-channel top-quark production cross sections and normalized differential t-channel top-quark production cross sections as functions of PT(TOPBAR).

More…

Version 2
Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 81 (2021) 737, 2021.
Inspire Record 1853014 DOI 10.17182/hepdata.100351

Measurements of both the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. The measurements are performed by targeting final states with three or four isolated leptons (electrons or muons) and are based on $\sqrt{s} = 13$ TeV proton-proton collision data with an integrated luminosity of 139 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat.) $\pm 0.08$ (syst.) pb, in agreement with the most precise theoretical predictions. The differential measurements are presented as a function of a number of kinematic variables which probe the kinematics of the $t\bar{t}Z$ system. Both absolute and normalised differential cross-section measurements are performed at particle and parton levels for specific fiducial volumes and are compared with theoretical predictions at different levels of precision, based on a $\chi^{2}/$ndf and $p$-value computation. Overall, good agreement is observed between the unfolded data and the predictions.

152 data tables

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

The measured $t\bar{t}\text{Z}$ cross-section value and its uncertainty based on the fit results from the combined trilepton and tetralepton channels. The value corresponds to the phase-space region where the difermion mass from the Z boson decay lies in the range $70 < m_{f\bar{f}} < 110$ GeV.

List of relative uncertainties of the measured inclusive $t\bar{t}\text{Z}$ cross section from the combined fit. The uncertainties are symmetrised for presentation and grouped into the categories described in the text. The quadratic sum of the individual uncertainties is not equal to the total uncertainty due to correlations introduced by the fit.

More…

Measurement of differential cross sections for Z boson production in association with jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 965, 2018.
Inspire Record 1667854 DOI 10.17182/hepdata.91404

The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19 fb$^{-1}$. The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation with next-to-next-to-leading logarithm resummation and parton showering.

36 data tables

Measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the measured cross section for Z+jets as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

Measured cross section for Z+jets as a function of inclusive jet multiplicity, $N_{\text{jets}}^{\text{min}}$, and breakdown of the relative uncertainty.

More…

Search for W' bosons decaying to a top and a bottom quark at $\sqrt{s} =$13 TeV in the hadronic final state

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 820 (2021) 136535, 2021.
Inspire Record 1857809 DOI 10.17182/hepdata.102392

A search is performed for W' bosons decaying to a top and a bottom quark in the all-hadronic final state, in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data were collected by the CMS experiment between 2016 and 2018 and correspond to an integrated luminosity of 137 fb$^{-1}$. Deep neural network algorithms are used to identify the jet initiated by the bottom quark and the jet containing the decay products of the top quark when the W boson from the top quark decays hadronically. No excess above the estimated standard model background is observed. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Both left- and right-handed W' bosons with masses below 3.4 TeV are excluded at 95% confidence level, and the most stringent limits to date on W' bosons decaying to a top and a bottom quark in the all-hadronic final state are obtained.

8 data tables

The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.

The reconstructed m$_{tb}$ distributions in data and expected background in validation region for the data taking period of 2016. Yield in each bin is divided by the corresponding bin width.

The reconstructed m$_{tb}$ distributions in data and expected background in signal region for the data taking period of 2017. Yield in each bin is divided by the corresponding bin width.

More…

Version 2
Reconstruction and identification of boosted di-$\tau$ systems in a search for Higgs boson pairs using 13 TeV proton$-$proton collision data in ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 11 (2020) 163, 2020.
Inspire Record 1809175 DOI 10.17182/hepdata.95432

In this paper, a new technique for reconstructing and identifying hadronically decaying $\tau^+\tau^-$ pairs with a large Lorentz boost, referred to as the di-$\tau$ tagger, is developed and used for the first time in the ATLAS experiment at the Large Hadron Collider. A benchmark di-$\tau$ tagging selection is employed in the search for resonant Higgs boson pair production, where one Higgs boson decays into a boosted $b\bar{b}$ pair and the other into a boosted $\tau^+\tau^-$ pair, with two hadronically decaying $\tau$-leptons in the final state. Using 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of 13 TeV, the efficiency of the di-$\tau$ tagger is determined and the background with quark- or gluon-initiated jets misidentified as di-$\tau$ objects is estimated. The search for a heavy, narrow, scalar resonance produced via gluon$-$gluon fusion and decaying into two Higgs bosons is carried out in the mass range 1$-$3 TeV using the same dataset. No deviations from the Standard Model predictions are observed, and 95% confidence-level exclusion limits are set on this model.

8 data tables

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Signal acceptance times selection efficiency as a function of the resonance mass, at various stages of the event selection. From top to bottom: an event pre-selection (trigger, object definitions and $E_{T}^{miss}>10$ GeV) is performed first; the requirements on the di-$\tau$ object and large-$R$ jet detailed in the text are then applied; finally, the $HH$ SR definition must be satisfied.

Distribution of $m^{vis}_{HH}$ after applying all the event selection that define the $HH$ SR, except the requirement on $m^{vis}_{HH}$. The background labelled as "Others" contains $W$+jets, diboson, $t\bar{t}$ and single-top-quark processes. The $X\rightarrow HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ signal is overlaid for two resonance mass hypotheses with a cross-section set to the expected limit, while all backgrounds are pre-fit. The first and the last bins contains the under-flow and over-flow bin entries, respectively. The hatched bands represent combined statistical and systematic uncertainties.

More…

Evidence for $t\bar{t}t\bar{t}$ production in the multilepton final state in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Eur.Phys.J.C 80 (2020) 1085, 2020.
Inspire Record 1809244 DOI 10.17182/hepdata.100170

A search is presented for four-top-quark production using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the LHC. Events are selected if they contain a same-sign lepton pair or at least three leptons (electrons or muons). Jet multiplicity, jet flavour and event kinematics are used to separate signal from the background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb. This corresponds to an observed (expected) significance with respect to the background-only hypothesis of 4.3 (2.4) standard deviations and provides evidence for this process.

15 data tables

The results of fitted inclusive ${t\bar{t}t\bar{t}}$ cross-section

The results of the fitted signal strength $\mu$

List of the uncertainties in the signal strength $\mu$, grouped in categories. The quoted values are obtained by repeating the fit, fixing a set of nuisance parameters of the sources corresponding to the considered category, and subtracting in quadrature the resulting uncertainty from the total uncertainty of the nominal fit presented in the last line. The total uncertainty is different from the sum in quadrature of the components due to correlations between nuisance parameters.

More…

Measurements of $W^+W^-+\ge 1~$jet production cross-sections in $pp$ collisions at $\sqrt{s}=13~$TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale Charles ; et al.
JHEP 06 (2021) 003, 2021.
Inspire Record 1852328 DOI 10.17182/hepdata.100511

Fiducial and differential measurements of $W^+W^-$ production in events with at least one hadronic jet are presented. These cross-section measurements are sensitive to the properties of electroweak-boson self-interactions and provide a test of perturbative quantum chromodynamics and the electroweak theory. The analysis is performed using proton$-$proton collision data collected at $\sqrt{s}=13~$TeV with the ATLAS experiment, corresponding to an integrated luminosity of 139$~$fb$^{-1}$. Events are selected with exactly one oppositely charged electron$-$muon pair and at least one hadronic jet with a transverse momentum of $p_{\mathrm{T}}>30~$GeV and a pseudorapidity of $|\eta|<4.5$. After subtracting the background contributions and correcting for detector effects, the jet-inclusive $W^+W^-+\ge 1~$jet fiducial cross-section and $W^+W^-+$ jets differential cross-sections with respect to several kinematic variables are measured, thus probing a previously unexplored event topology at the LHC. These measurements include leptonic quantities, such as the lepton transverse momenta and the transverse mass of the $W^+W^-$ system, as well as jet-related observables such as the leading jet transverse momentum and the jet multiplicity. Limits on anomalous triple-gauge-boson couplings are obtained in a phase space where interference between the Standard Model amplitude and the anomalous amplitude is enhanced.

55 data tables

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production.

Measured fiducial cross section for $pp\rightarrow W^+W^-$+jets production for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$. The second column contains the results obtained with a fiducial particle phase space that includes a veto on $b$-jets. This alternative result is obtained from the nominal result by the application of bin-wise correction that is calculated as the ratio of the predicted differential cross-section in the nominal analysis phase space and the predicted cross-section for a phase space that includes a veto on events with $b$-jets with $p_{\mathrm{T}} > 20$ GeV. Also shown are the Standard Model predictions for $q\bar{q} \rightarrow WW$, obtained from Sherpa 2.2.2, MadGraph 2.3.3 + Pythia 8.212 using FxFx merging, and Powheg MiNLO + Pythia 8.244. These predictions are supplemented by the Sherpa 2.2.2 + OpenLoops simulation of $gg\rightarrow WW$. Finally, the prediction from MATRIX is given, which includes nNLO QCD and NLO EW corrections to $WW$+jet production. Overflow events are included in the last bin. The largest observed value is 1168 GeV.

Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$

More…

Version 4
Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb$^{-1}$ of data collected with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 06 (2020) 046, 2020.
Inspire Record 1754675 DOI 10.17182/hepdata.91214

A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.

120 data tables

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.

More…

Observation of electroweak production of W$\gamma$ with two jets in proton-proton collisions at $\sqrt{s}= $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 811 (2020) 135988, 2020.
Inspire Record 1812981 DOI 10.17182/hepdata.95243

A first observation is presented for the electroweak production of a W boson, a photon, and two jets in proton-proton collisions. The W boson decays are selected by requiring one identified electron or muon and an imbalance in transverse momentum. The two jets are required to have a high dijet mass and a large separation in pseudorapidity. The measurement is based on data collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed (expected) significance for this process is 4.9 (4.6) standard deviations. After combining with previously reported CMS results at 8 TeV, the observed (expected) significance is 5.3 (4.8) standard deviations. The cross section for the electroweak W$\gamma$jj production in a restricted fiducial region is measured as 20.4 $\pm$ 4.5 fb and the total cross section for W$\gamma$ production in association with 2 jets in the same fiducial region is 108 $\pm$ 16 fb. All results are in good agreement with recent theoretical predictions. Constraints are placed on anomalous quartic gauge couplings in terms of dimension-8 effective field theory operators.

3 data tables

The measured EW W$\gamma$jj fiducial cross section. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources. The EW W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.6.0 at LO. Within the acceptance, the theoretical cross section is 17.0 fb.

The measured W$\gamma$jj cross section, combining the EW and QCD-induced production mechanisms. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources. The QCD W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.4.2 at NLO in QCD. Within the acceptance, the theoretical cross section of QCD W$\gamma$jj is 72.7 fb. The EW W$\gamma$jj is produced using MadGraph5_aMC@NLO v2.6.0 at LO. Within the acceptance, the theoretical cross section of EW W$\gamma$jj is 17.0 fb. The total EW+QCD W$\gamma$ jj cross section is the sum of the two processes.

Constraints on dimension-8 effective field theory operators.


Measurements of the production cross-section for a $Z$ boson in association with $b$-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 07 (2020) 044, 2020.
Inspire Record 1788444 DOI 10.17182/hepdata.94219

This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 35.6 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one or at least two $b$-jets with transverse momentum $p_\textrm{T}>$ 20 GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on leading-order (LO) or next-to-leading-order (NLO) matrix elements interfaced with a parton-shower simulation and testing different flavour schemes for the choice of initial-state partons are compared with measured cross-sections. The 5-flavour number scheme predictions at NLO accuracy agree better with data than 4-flavour number scheme ones. The 4-flavour number scheme predictions underestimate data in events with at least one b-jet.

15 data tables

Measured fiducial cross sections for events with $Z(\rightarrow ll)\ge+1$ b-jets or with $Z(\rightarrow ll)\ge+2$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the Z boson $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

Differential fiducial cross section of the leading b-jet $p_{\text{T}}$ in events with $Z(\rightarrow ll)\ge+1$ b-jets. The statistical uncertainties and the individual components of systematic uncertainty are given in each bin. Statistical uncertainties are bin-to-bin uncorrelated.

More…

Version 2
Search for Higgs boson decays into two new low-mass spin-0 particles in the 4$b$ channel with the ATLAS detector using $pp$ collisions at $\sqrt{s}= 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.D 102 (2020) 112006, 2020.
Inspire Record 1797642 DOI 10.17182/hepdata.94383

This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into $b$-quark pairs, $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy $\sqrt{s}=13$ TeV. This search focuses on the regime where the decay products are collimated and in the range $15 \leq m_a \leq 30$ GeV and is complementary to a previous search in the same final state targeting the regime where the decay products are well separated and in the range $20 \leq m_a \leq 60$ GeV. A novel strategy for the identification of the $a \rightarrow b\bar{b}$ decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36 fb$^{-1}$ of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross-section of $H \rightarrow aa \rightarrow (b\bar{b})(b\bar{b})$, where the Higgs boson is produced in association with a $Z$ boson.

10 data tables

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$. Both observed and expected limits are listed. In the case of the expected limits, one- and two-standard-deviation uncertainty bands are also listed.

Summary of the observed 95% CL upper limits on $\sigma_{ZH} BR(H\rightarrow aa \rightarrow (b\bar{b})(b\bar{b}))$ for the resolved analysis.

More…

Version 3
Measurement of the Drell--Yan triple-differential cross section in $pp$ collisions at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2017) 059, 2017.
Inspire Record 1630886 DOI 10.17182/hepdata.77492

This paper presents a measurement of the triple-differential cross section for the Drell--Yan process $Z/\gamma^*\rightarrow \ell^+\ell^-$ where $\ell$ is an electron or a muon. The measurement is performed for invariant masses of the lepton pairs, $m_{\ell\ell}$, between $46$ and $200$ GeV using a sample of $20.2$ fb$^{-1}$ of $pp$ collisions data at a centre-of-mass energy of $\sqrt{s}=8$ TeV collected by the ATLAS detector at the LHC in 2012. The data are presented in bins of invariant mass, absolute dilepton rapidity, $|y_{\ell\ell}|$, and the angular variable $\cos\theta^{*}$ between the outgoing lepton and the incoming quark in the Collins--Soper frame. The measurements are performed in the range $|y_{\ell\ell}|<2.4$ in the muon channel, and extended to $|y_{\ell\ell}|<3.6$ in the electron channel. The cross sections are used to determine the $Z$ boson forward-backward asymmetry as a function of $|y_{\ell\ell}|$ and $m_{\ell\ell}$. The measurements achieve high-precision, below the percent level in the pole region, excluding the uncertainty in the integrated luminosity, and are in agreement with predictions. These precision data are sensitive to the parton distribution functions and the effective weak mixing angle.

20 data tables

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

Detailed breakdown of systematic uncertainties for the measurement in the central rapidity muon channel. Common systematic uncertainty on the luminosity measurment of 1.8% is not included. Correlated systematic uncertainties with the suffix :A should be treated as additive and with the suffix :M should be treated as multiplicative. The source 'sys,uncor' represents bin-to-bin uncorrelated systematic uncertainty. The cross sections are given at the Born QED level. 'C Dressed' represents the multiplicative correction factor to translate the cross sections to the dressed level with the cone radius of 0.1: SigmaDressed = C Dressed * SigmaBorn.

More…

Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

216 data tables

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

Observed and predicted mTtot distribution in the b-veto category of the 1l1tau_h channel. Please note that the bin content is divided by the bin width in the paper figure, but not in the HepData table.The last bin includes overflows. The combined prediction for A and H bosons with masses of 400, 1000 and 1500 GeV and $\tan\beta$ = 6, 12 and 25 respectively in the mh125 scenario are also provided. The combined prediction for A and H bosons with masses of 1000 and 1500 GeV is scaled by 100 in the paper figure, but not in the HepData table.

More…

Search for dark matter produced in association with a dark Higgs boson decaying into $W^\pm W^\mp$ or $ZZ$ in fully hadronic final states from $\sqrt{s}=13$ TeV $pp$ collisions recorded with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 126 (2021) 121802, 2021.
Inspire Record 1822529 DOI 10.17182/hepdata.97191

Several extensions of the Standard Model predict the production of dark matter particles at the LHC. An uncharted signature of dark matter particles produced in association with $VV=W^\pm W^\mp$ or $ZZ$ pairs from a decay of a dark Higgs boson $s$ is searched for using 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a center-of-mass energy of 13 TeV. The $s\to V(q\bar q)V(q\bar q)$ decays are reconstructed with a novel technique aimed at resolving the dense topology from boosted $VV$ pairs using jets in the calorimeter and tracking information. Dark Higgs scenarios with $m_s > 160$ GeV are excluded.

13 data tables

Data overlaid on SM background post-fit yields stacked in each SR and CR category and E<sub>T</sub><sup>miss</sup> bin with the maximum-likelihood estimators set to the conditional values of the CR-only fit, and propagated to SR and CRs. Pre-fit uncertainties cover differences between the data and pre-fit background prediction.

Dominant sources of uncertainty for three dark Higgs scenarios after the fit to Asimov data generated from the expected values of the maximum-likelihood estimators including predicted signals with m<sub>Z'</sub> = 1 TeV and m<sub>s</sub> of (a) 160 GeV, (b) 235 GeV, and (c) 310 GeV. The uncertainty in the fitted signal yield relative to the theory prediction is presented. Total is the quadrature sum of statistical and total systematic uncertainties, which consider correlations.

The ratios (&mu;) of the 95&#37; C.L. upper limits on the combined s&rarr; W<sup>&plusmn;</sup>W<sup>&#8723;</sup> and s&rarr; ZZ cross section to simplified model expectations for the m<sub>Z'</sub>=0.5 TeV scenario, for various m<sub>s</sub> hypotheses. The observed limits (solid line) are consistent with the expectation under the SM-only hypothesis (dashed line) within uncertainties (filled band), except for a small excess for m<sub>s</sub>=160 GeV, discussed in the text.

More…