Centrality dependence of charged particle multiplicity in Au Au collisions at s(N N)**(1/2) = 130-GeV.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 86 (2001) 3500-3505, 2001.
Inspire Record 539140 DOI 10.17182/hepdata.50270

We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find $dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst)$. The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.

1 data table

130 GeV is sqrt(S) per nucleon-nucleon collision. N(C=N_NUCLEONS) and N(C=N_COLLISONS) are the number of participating nucleons and binary collisions. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.


Centrality dependence of pi+-, K+-, p and anti-p production from s(NN)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 242301, 2002.
Inspire Record 568437 DOI 10.17182/hepdata.19421

Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.

21 data tables

Transverse momentum spectra for PI+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for PI- in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

Transverse momentum spectra for K+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.

More…

Mid-rapidity neutral pion production in proton proton collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 91 (2003) 241803, 2003.
Inspire Record 617784 DOI 10.17182/hepdata.41956

The invariant differential cross section for inclusive neutral pion production in p+p collisions at sqrt(s_NN) = 200 GeV has been measured at mid-rapidity |eta| < 0.35 over the range 1 < p_T <~ 14 GeV/c by the PHENIX experiment at RHIC. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.

1 data table

The invariant differential cross section as a function of PT. The mean PT here is defined as the PT for which the cross section equals its average over thebin.


Measurement of the mid-rapidity transverse energy distribution from s(N N)**(1/2) = 130-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 87 (2001) 052301, 2001.
Inspire Record 555603 DOI 10.17182/hepdata.31419

The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).

1 data table

130 GeV is sqrt(S) per nucleon-nucleon collision. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.


J/psi production in Au Au collisions at s(NN)**(1/2) = 200-GeV at the Relativistic Heavy Ion Collider.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 69 (2004) 014901, 2004.
Inspire Record 619646 DOI 10.17182/hepdata.57253

First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The yield of J/Psi's measured in the PHENIX experiment via electron-positron decay pairs at mid-rapidity for Au-Au reactions at sqrt(s_NN) = 200 GeV are analyzed as a function of collision centrality. For this analysis we have studied 49.3 million minimum bias Au-Au reactions. We present the J/Psi invariant yield dN/dy for peripheral and mid-central reactions. For the most central collisions where we observe no signal above background, we quote 90% confidence level upper limits. We compare these results with our J/Psi measurement from proton-proton reactions at the same energy. We find that our measurements are not consistent with models that predict strong enhancement relative to binary collision scaling.

2 data tables

Measured invariant differential yield at mid-rapidity of J/PSI, as a function of centratility, times branching ratio Be+e-, for three bins of centrality : 0-20%, 20-40% and 40-90% of Au-Au cross-section. The 90% confidence level upper limit (CLUL) for the yield is also given.

Measured differential yield of J/PSI per binary collisions,at mid rapidity, as a function of the centrality, times branching ratio Be+e-.The 90% confidence level upper limit (CLUL) for J/PSI differential yield is also given. The values of the number of participants for each centrality bins are calculated for general information.


Centrality dependence of charm production from single electrons measurement in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 94 (2005) 082301, 2005.
Inspire Record 660611 DOI 10.17182/hepdata.57254

The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.

18 data tables

Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.

Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.

Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.

More…

J / psi production from proton proton collisions at s**(1/2) = 200-GeV

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 92 (2004) 051802, 2004.
Inspire Record 623000 DOI 10.17182/hepdata.57093

J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.

5 data tables

Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.

Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.

J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.

More…

Identified charged particle spectra and yields in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 69 (2004) 034909, 2004.
Inspire Record 624474 DOI 10.17182/hepdata.106657

The centrality dependence of transverse momentum distributions and yields for pi^+/-, K^+/-, p and p^bar in Au+Au collisions at sqrt(s_NN) = 200 GeV at mid-rapidity are measured by the PHENIX experiment at RHIC. We observe a clear particle mass dependence of the shapes of transverse momentum spectra in central collisions below ~ 2 GeV/c in p_T. Both mean transverse momenta and particle yields per participant pair increase from peripheral to mid-central and saturate at the most central collisions for all particle species. We also measure particle ratios of pi^-/pi^+, K^-/K^+, p^bar/p, K/pi, p/pi and p^bar/pi as a function of p_T and collision centrality. The ratios of equal mass particle yields are independent of p_T and centrality within the experimental uncertainties. In central collisions at intermediate transverse momenta ~ 1.5-4.5 GeV/c, proton and anti-proton yields constitute a significant fraction of the charged hadron production and show a scaling behavior different from that of pions.

25 data tables

Centrality dependence of the $p_{T}$ distribution for $\pi^{+}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.

Centrality dependence of the $p_{T}$ distribution for $\pi^{-}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.

Centrality dependence of the $p_{T}$ distribution for $K^{+}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Errors are statistical only.

More…

Suppression of hadrons with large transverse momentum in central Au+Au collisions at s(NN)**(1/2) = 130-GeV

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.Lett. 88 (2002) 022301, 2002.
Inspire Record 562409 DOI 10.17182/hepdata.110700

Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c $< p_T <$ 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV. At high $p_T$ the spectra from peripheral nuclear collisions are consistent with the naive expectation of scaling the spectra from p+p collisions by the average number of binary nucleon- nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary- scaled p+p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear effect in central nuclear collisions at RHIC energies.

12 data tables

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-80% from the PbSc detector.

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 60-80% from the PbSc detector.

The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-10% from the PbGl detector.

More…

Bose-Einstein correlations of charged pion pairs in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 93 (2004) 152302, 2004.
Inspire Record 642225 DOI 10.17182/hepdata.140436

Bose-Einstein correlations of identically charged pion pairs were measured by the PHENIX experiment at mid-rapidity in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. The Bertsch-Pratt radius parameters were determined as a function of the transverse momentum of the pair and as a function of the centrality of the collision. Using the \it{full} Coulomb correction, the ratio $R_{\rm out}/R_{\rm side}$ is smaller than unity for $<k_{\rm T}>$ from 0.25 to 1.2 GeV/c and for all measured centralities. However, using recently developed partial Coulomb correction methods, we find that $R_{\rm out}/R_{\rm side}$ is 0.8-1.1 for the measured $<k_{\rm T}>$ range, and approximately constant at unity with the number of participants.

5 data tables

Panel (a) and (b) show one-dimensional correlation functions for $\pi^+\pi^+$ and $\pi^-\pi^-$. The bottom figures show the three-dimensional correlation function for $\pi^-\pi^-$ with the full Coulomb (open circle) and without Coulomb (filled triangle) corrections for 0.2 < $k_T$ < 2.0 GeV/$c$ for 0-30% centrality. The projection of the 3-D correlation functions are averaged over the lowest 40 MeV in the orthogonal directions. The error bars are statistical only. The lines overlaid on the open circles (filled triangles) correspond to fits to Eq. 1 (Eq. 2) over the entire distribution. Panel (c) shows the one-dimensional correlation function of unlike-signed pions for 0.2 < $k_T$ < 2.0 GeV/$c$. The two overlaid histograms show calculations for the full (dashed) and the 50% partial (solid) Coulomb corrections. $<k_T>$ ~ 0.45 ($\pm$0.17) GeV/$c$ and $<N_{part}>$ ~ 281 ($\pm$4).

The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.

The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.

More…