Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abeling, K. ; et al.
Phys.Rev.C 108 (2023) 024906, 2023.
Inspire Record 2630510 DOI 10.17182/hepdata.139684

Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.

62 data tables

The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.

The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.

The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.

More…

Differential Cross-sections of Proton Compton Scattering at Photon Laboratory Energies Between 1.2-{GeV} and 1.7-{GeV}

Duda, J. ; Hofner, F.W. ; Jung, M. ; et al.
Z.Phys.C 17 (1983) 319, 1983.
Inspire Record 182590 DOI 10.17182/hepdata.50210

Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. The experiment covers photon laboratory energies between 1.2 GeV and 1.7 GeV and the square of the four-momentum transfer ranges fromt=−0.17 GeV2 to −0.98GeV2 corresponding to c.m. scattering angles between 35° and 80°. The cross sections exhibit a forward peak followed by a monotone fall-off up to the largest measured |t|-values. Fits of the formdσ/dt=A·exp(Bt) to the data points with |t|≦0.5 GeV2 yield forward cross sectionsA, which are consistent with the 0° cross sections calculated from the measured total photon-proton cross section. The average slope isB=5.6±0.14 GeV2.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Differential Cross-sections of Proton Compton Scattering at Photon Laboratory Energies Between 700-{MeV} and 1000-{MeV}

Jung, M. ; Kattein, J. ; Kuck, H. ; et al.
Z.Phys.C 10 (1981) 197, 1981.
Inspire Record 165344 DOI 10.17182/hepdata.50251

Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. 78 data points are presented as angular distributions at photon lab energies of 700, 750, 800, 850, 900, and 950MeV. The c.m. scattering angle ranges from 40°–130°, corresponding to a variation of the four momentum transfer squared betweent=−0.10 tot=−0.96 GeV2 at 700 and 950 MeV, respectively. Two additional differential cross sections have been measured at 1000MeV, 35.6° and 47.4°. The angular distributions show forward peaks whose extrapolations to 0° are consistent with calculated forward cross sections taken from literature. The small angle data (|t| ≲0.2 GeV2) together with the calculated cross sections at 0° are also consistent with the assumption of a slope parameterB of 5 GeV−2. For the first time a rerise of the angular distributions towards backward angles has been observed. It becomes less steep with increasing energy. The most interesting feature of the angular distributions is a sharp structure which appears betweent=−0.55 GeV2 at 700MeV andt=−0.72 GeV2 at 950 MeV. Such a rapid varation of the differential cross section witht has never been ovserved in elastic hadron-hadron scattering or photoproduction processes. It indicates the existence of a dynamical mechanism which could be a peculiarity of Compton scattering.

14 data tables
More…