Study of the Charge Exchange Reactions $\pi^- p \to (\pi^0$, $\eta$, $\eta^\prime$) $n$ at 63-{GeV}

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Z.Phys.C 8 (1981) 95, 1981.
Inspire Record 156266 DOI 10.17182/hepdata.49658

None

4 data tables

INCLUDING SYSTEMATIC ERRORS.

STATISTICAL ERRORS ONLY.

STATISTICAL ERRORS ONLY.

More…

Elastic and total $\pi^{+}\pi^{-}$ cross-sections from a high statistics measurement of the reaction $\pi^{-}p \to \pi^{+}\pi^{-}n$ at 63 GeV/c

Weilhammer, P. ; Berglund, A. ; Chabaud, V. ; et al.
2 (1979) 628-635, 1979.
Inspire Record 148986 DOI 10.17182/hepdata.75420

A sample of about 230000 events of the reaction pi /sup -/p to pi /sup +/ pi /sup -/n, measured with a magnetic forward spectrometer set up in an unseparated pi /sup -/ beam with a momentum of 63 GeV/c at the SPS has been analysed in terms of one pion exchange. The elastic pi /sup +/ pi /sup -/ cross section has been determined using an extrapolation to the pion pole in the mass range up to m( pi /sup +/ pi /sup -/)=4 GeV. The total pi /sup +/ pi /sup -/ cross section is obtained via the optical theorem. (7 refs).

5 data tables

INTEGRATED 2- S-WAVE INTENSITY FOR 1500 TO 1800 MEV, INCLUDING SIGNIFICANT BACKGROUND.

No description provided.

No description provided.

More…

Diffractive Production of Strange Mesons at 63-{GeV}

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Nucl.Phys.B 187 (1981) 1-41, 1981.
Inspire Record 164180 DOI 10.17182/hepdata.34277

Nearly 200 000 examples of the diffractive process K − p → K − π − π + p at 63 GeV have been obtained using a two magnet spectrometer equipped with Čerenkov counters for secondary particle identification. In addition some 2000 examples of the process K − p → ω K − p have been obtained. The K ππ data have been subjected to partial-wave analysis. The dominant J P = 1 + system couples to K ∗ π , in both S and D waves, ϱ K, κπ and ε K. The data confirm the existence of two J P = 1 + Q mesons and their masses, widths and branching ratios are given. The ifωK data show that the couplings of the Q mesons to ω K are approximately equal to the couplings to ϱ 0 K. The two 1 + nonets expected in the quark model are discussed in the light of this and other recent experiments. There is strong evidence for a broad J P = 0 − resonance at about 1.46 GeV. At higher masses, structure in the J P = 2 − partial waves establishes the existence of at least one J P = 2 − L meson.

1 data table

JP=1+ S-WAVE PARTIAL WAVE INTENSITIES AND TOTAL INTENSITY FOR Q-REGION. THE <K* PI> INTENSITY IS DOMINATED BY QHIGH. THE <K RHO> AND <KAPPA PI> INTENSITIES ARE DOMINATED BY QLOW.


Diffractive Production of 3 $\pi$ States at 63-{GeV} and 94-{GeV}

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Nucl.Phys.B 182 (1981) 269-336, 1981.
Inspire Record 156369 DOI 10.17182/hepdata.34314

Diffractive production of the 3 π system has been studied at 63 and 94 GeV using a two magnet spectrometer with high, uniform acceptance. The total number of events used in the analysis is ∼600 000. The A 2 meson is shown to be diffractively produced. The existence of a resonant component in both the 1 + and 2 − enhancements is established and resonance parameters for the corresponding A 1 and A 3 mesons are given. There are several indications in the data of states which would correspond to radial excitations in the quark model.

4 data tables

SEE C. DAUM ET AL., PL 89B, 276 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+486> RED = 486 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+420> RED = 420 </a>) OF THE GENEVA CONFERENCE PREPRINT, B. ALPER ET AL. (1979).

SEE C. DAUM ET AL., PL 89B, 281 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+487> RED = 487 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+419> RED = 419 </a>) OF THE GENEVA CONFERENCE PREPRINT, G. THOMPSON ET AL. (1979).

SEE C. DAUM ET AL., PL 89B, 285 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+488> RED = 488 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+421> RED = 421 </a>) OF THE GENEVA CONFERENCE PREPRINT, B. ALPER ET AL. (1979).

More…

Inclusive $\phi$ Meson Production in 93-{GeV} and 63-{GeV} Hadron Interaction

The ACCMOR collaboration Daum, C. ; Hertzberger, L. ; Hoogland, W. ; et al.
Nucl.Phys.B 186 (1981) 205-218, 1981.
Inspire Record 10281 DOI 10.17182/hepdata.7855

The inclusive reactions h+p→ φ +X, (h= π ±, ,K ± ,p ± ), are studied for 0⪅ x F ⪅0.3 and p ⊥ ⩽ 1 GeV at 93 and and 63 GeV incident momentum. Differential cross sections d σ /d p ⊥ 2 and dσ /d x F are presented and are compared with predictions of the naive parton model.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of $D^*$+- and ($\bar{D}$)0 / $D^\pm$ Production in High-energy $\pi^-$ Be Interactions at the {SPS}

The ACCMOR & Amsterdam-Bristol-CERN-Cracow-Munich-Rutherford collaborations Bailey, R. ; Bardsley, D.G. ; Becker, H. ; et al.
Phys.Lett.B 132 (1983) 230-236, 1983.
Inspire Record 190658 DOI 10.17182/hepdata.30633

An experiment has been performed to search for associated hadronic production of charmed mesons, using a large-aperture forward magnetic spectrometer setup in a π − beam at the CERN SPS. A prompt electron trigger was used to select events containing a pair by charmed particles. D mesons have been identified by reconstruction of hadronic decay modes such as Kπ, Kππ. Data have been taken at 120, 175, and 200 GeV, The D D cross section measured at 175 200 GeV is σ( D D ) = (48 ± 15) μ b with a systematic uncertainty of ±50%. The energy dependence of the cross section is measured to be σ( D D ) [120 GeV )/σ( D D [175/200 GeV ] = 0.62 ± 0.34 .

2 data tables

No description provided.

No description provided.


Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Production rates of b anti-b quark pairs from gluons and b anti-b b anti-b events in hadronic Z0 decays.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2001) 447-460, 2001.
Inspire Record 535059 DOI 10.17182/hepdata.49875

The rates are measured per hadronic Z decay for gluon splitting to bb(bar) quark pairs, g_bb, and of events containing two bb(bar) quark pairs, g_4b, using a sample of four-jet events selected from data collected with the OPAL detector. Events with an enhanced signal of gluon splitting to bb(bar) quarks are selected if two of the jets are close in phase-space and contain detached secondary vertices. For the event sample containing two bb(bar) quark pairs, three of the four jets are required to have a significantly detached secondary vertex. Information from the event topology is combined in a likelihood fit to extract the values of g_bb and g_4b, namely g_bb = (3.07 +- 0.53(stat) +- 0.97(syst))x10^-3 g_4b = (0.36 +- 0.17(stat) +- 0.27(syst))x10^-3

1 data table

No description provided.


Determination of alpha(s) from hadronic event shapes in e+ e- annihilation at 192-GeV <= s**(1/2) <= 208-GeV

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 536 (2002) 217-228, 2002.
Inspire Record 586115 DOI 10.17182/hepdata.49741

Results are presented from a study of the structure of high energy hadronic events recorded by the L3 detector at sqrt(s)>192 GeV. The distributions of several event shape variables are compared to resummed O(alphaS^2) QCD calculations. We determine the strong coupling constant at three average centre-of-mass energies: 194.4, 200.2 and 206.2 GeV. These measurements, combined with previous L3 measurements at lower energies, demonstrate the running of alphaS as expected in QCD and yield alphaS(mZ) = 0.1227 +- 0.0012 +- 0.0058, where the first uncertainty is experimental and the second is theoretical.

9 data tables

The measured ALPHA_S at three centre-of-mass energies from fits to the individual event shape distributions. The first error is statistcal, the first DSYS error is the experimental systematic uncertainty, and the second DSYS error is the theoryuncertainty.

Updated ALPHA_S measurements from the BT, BW and C-Parameter distributions,from earlier L3 data at lower centre-of-mass energies.. The first error is the total experimental error (stat+sys in quadrature) and the DSYS error is the theory uncertainty.

Combined ALPHA_S values from the five event shape variables. The first error is statistical, the first DSYS error is the experimental systematic uncertainity, the second DSYS error is the uncertainty from the hadronisdation models, andthethird DSYS errpr is the uncertainty due to uncalculated higher orders in the QCDpredictions.

More…

Measurement of charged-particle multiplicity distributions and their H(q) moments in hadronic Z decays at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 577 (2003) 109-119, 2003.
Inspire Record 565148 DOI 10.17182/hepdata.49796

The charged-particle multiplicity distribution is measured for all hadronic events as well as for light-quark and b-quark events produced in e+e- collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated. The H moments of the multiplicity distributions are studied, and their quasi-oscillations as a function of the rank of the moment are investigated.

6 data tables

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution without KOS and LAMBDA decay for all events.

Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for light quark events.

More…