Neutral pion production at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 74 (2014) 3108, 2014.
Inspire Record 1296306 DOI 10.17182/hepdata.30758

Invariant yields of neutral pions at midrapidity in the transverse momentum range $0.6 < p_{T} < 12 GeV/c$ measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV are presented for six centrality classes. The pp reference spectrum was measured in the range $0.4 < p_{T} < 10 GeV/c$ at the same center-of-mass energy. The nuclear modification factor, $R_{\rm AA}$, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about $8-10$ for $5 \lesssim p_{T} \lesssim 7 GeV/c$. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.

17 data tables

Invariant differential yields of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV.

Invariant differential cross section of PI0 produced in inelastic pp collisions at center-of-mass energy 2.76 TeV, the uncertainty of \sigma_{inel} of 3.9% is not included in the systematic error.

Invariant differential yields of PI0 produced in 0-5% central inelastic PbPb collisions at center-of-mass energy per nucleon 2.76 TeV.

More…

K^0_S and {\Lambda} production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.Lett. 111 (2013) 222301, 2013.
Inspire Record 1243863 DOI 10.17182/hepdata.61857

The ALICE measurement of K$^0_{\rm S}$ and $\rm\Lambda$ production at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV is presented. The transverse momentum ($p_{\rm T}$) spectra are shown for several collision centrality intervals and in the $p_{\rm T}$ range from 0.4 GeV/$c$ (0.6 GeV/$c$ for $\rm\Lambda$) to 12 GeV/$c$. The $p_{\rm T}$ dependence of the $\rm \Lambda$/K$^0_{\rm S}$ ratios exhibits maxima in the vicinity of 3 GeV/$c$, and the positions of the maxima shift towards higher $p_{\rm T}$ with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate $p_{\rm T}$ is not observed in pp interactions at sqrt(s) = 0.9 TeV and at sqrt(s) = 7 TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured $p_{\rm T}$ spectra above 2 GeV/$c$ progressively decouple from hydrodynamical-model calculations. For higher values of $p_{\rm T}$, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the $p_{\rm T}$ dependence of the $\rm\Lambda$/K$^0_{\rm S}$ ratio.

23 data tables

pT spectra of K0Short in the rapidity range -0.5<y<0.5 in the centrality interval 0.0-5.0%.

pT spectra of K0Short in the rapidity range -0.5<y<0.5 in the centrality interval 5.0-10.0%.

pT spectra of K0Short in the rapidity range -0.5<y<0.5 in the centrality interval 10.0-20.0%.

More…

Centrality dependence of Pi, K, p production in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Rev.C 88 (2013) 044910, 2013.
Inspire Record 1222333 DOI 10.17182/hepdata.61925

In this paper measurements are presented of $\rm \pi$$^+$, $\rm \pi$$^-$, K$^+$, K$^-$, p and $\overline{\rm p}$ production at mid-rapidity < 0.5, in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV as a function of centrality. The measurement covers the transverse momentum ($p_{\rm T}$) range from 100, 200, 300 MeV/$c$ up to 3, 3, 4.6 GeV/$c$, for $\rm\pi$, K, and p respectively. The measured $p_{\rm T}$ distributions and yields are compared to expectations based on hydrodynamic, thermal and recombination models. The spectral shapes of central collisions show a stronger radial flow than measured at lower energies, which can be described in hydrodynamic models. In peripheral collisions, the $p_{\rm T}$ distributions are not well reproduced by hydrodynamic models. Ratios of integrated particle yields are found to be nearly independent of centrality. The yield of protons normalized to pions is a factor ~1.5 lower than the expectation from thermal models.

57 data tables

pT-differential invariant yield of pion+ and pion- for centrality 0-5%. These data are also available from http://hepdata.cedar.ac.uk/view/ins1126966.

pT-differential invariant yield of pion+ and pion- for centrality 5-10%.

pT-differential invariant yield of pion+ and pion- for centrality 10-20%.

More…

Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 728 (2014) 216-227, 2014.
Inspire Record 1243865 DOI 10.17182/hepdata.62098

The production of ${\rm\Xi}^-$ and ${\rm\Omega}^-$ baryons and their anti-particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV has been measured using the ALICE detector. The transverse momentum spectra at mid-rapidity ($|y| < 0.5$) for charged $\rm\Xi$ and $\rm\Omega$ hyperons have been studied in the range $0.6 < p_{\rm T} < 8.0$ GeV/$c$ and $1.2 < p_{\rm T} < 7.0$ GeV/$c$, respectively, and in several centrality intervals (from the most central 0-10% to the most peripheral 60-80% collisions). These spectra have been compared with the predictions of recent hydrodynamic models. In particular, the Krak${\'o}$w and EPOS models give a satisfactory description of the data, with the latter covering a wider $p_{\rm T}$ range. Mid-rapidity yields, integrated over $p_{\rm T}$, have been determined. The hyperon-to-pion ratios are similar to those at RHIC: they rise smoothly with centrality up to $\langle N_{\rm part}\rangle$~150 and saturate thereafter. The enhancements (yields per participant nucleon relative to pp collisions) increase both with the strangeness content of the baryon and with centrality, but are less pronounced than at lower energies.

14 data tables

pT-differential production yields for Xi- and XiBar+ baryons with centrality 0-10%.

pT-differential production yields for Xi- and XiBar+ baryons with centrality 10-20%.

pT-differential production yields for Xi- and XiBar+ baryons with centrality 20-40%.

More…

Measurement of charm production at central rapidity in proton-proton collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
JHEP 07 (2012) 191, 2012.
Inspire Record 1115187 DOI 10.17182/hepdata.62077

The $p_{\rm T}$-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D$^0$, D$^+$, and D$^{*+}$ in the rapidity range $|y|<0.5$, and for transverse momentum $1< p_{\rm T} <12$ GeV/$c$, were measured in proton-proton collisions at $\sqrt{s} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D$^0 \rightarrow $K$\pi$, D$^+ \rightarrow $K$\pi\pi$, D$^{*+} \rightarrow $D$^0\pi$, and their charge conjugates, and was performed on a $L_{\rm int} = 1.1$ nb$^{-1}$ event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at $\sqrt{s} = 2.76$ TeV and at 7 TeV was evaluated by extrapolating to the full phase space the $p_{\rm T}$-differential production cross sections at $\sqrt{s} = 2.76$ TeV and our previous measurements at $\sqrt{s} = 7$ TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.

6 data tables

Production cross section in |y| < 0.5 for prompt D0, D+, and D*+ mesons in pp collisions at sqrt(s) = 2.76 TeV, in transverse momentum intervals. The second (sys) error is the uncertainty on the respective branching ratios.

Visible production cross sections of prompt D mesons for |y|<0.5 in pp collisions at sqrts=2.76 and 7 TeV. The normalization systematic uncertainty of 1.9% (3.5%) at sqrts=2.76 (7) TeV and the decay BR uncertainties are not quoted here.

Production cross sections dsig/dy of D mesons, integrated over all pt for |y|<0.5. The second (sys) error is the from the luminosity uncertainty, the third from the branching-ratio uncertainties and the fourth is from the extrapolation uncertainty.

More…

Production of inclusive $\Upsilon$(1S) and $\Upsilon$(2S) in p-Pb collisions at $\mathbf{\sqrt{s_{{\rm NN}}} = 5.02}$ TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 740 (2015) 105-117, 2015.
Inspire Record 1321022 DOI 10.17182/hepdata.66344

We report on the production of inclusive $\Upsilon$(1S) and $\Upsilon$(2S) in p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV at the LHC. The measurement is performed with the ALICE detector at backward ($-4.46< y_{{\rm cms}}<-2.96$) and forward ($2.03< y_{{\rm cms}}<3.53$) rapidity down to zero transverse momentum. The production cross sections of the $\Upsilon$(1S) and $\Upsilon$(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of $\Upsilon$(1S). A suppression of the inclusive $\Upsilon$(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects.

7 data tables

Inclusive UPSI(1S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.

Inclusive UPSI(1S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.

Inclusive UPSI(2S) production cross section as a function of rapidity in p-Pb collisions at sqrt(s_NN) = 5.02 TeV. The data was collected in 2013 with two beam configurations, p-Pb and Pb-p with integrated luminosities of 5.0 nb-1 and 5.8 nb-1, respectively.

More…

$^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 360-372, 2016.
Inspire Record 1380234 DOI 10.17182/hepdata.70861

The production of the hypertriton nuclei $^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ has been measured for the first time in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE experiment at LHC energies. The total yield, d$N$/d$y$ $\times \mathrm{B.R.}_{\left( ^{3}_{\Lambda}\mathrm H \rightarrow ^{3}\mathrm{He},\pi^{-} \right)} = \left( 3.86 \pm 0.77 (\mathrm{stat.}) \pm 0.68 (\mathrm{syst.})\right) \times 10^{-5}$ in the 0-10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter $B_3$ shows a dependence on the transverse momentum, similar to the $B_2$ of deuterons and the $B_3$ of $^{3}\mathrm{He}$ nuclei. The ratio of yields $S_3$ = $^{3}_{\Lambda}\mathrm H$/($^{3}\mathrm{He}$ $\times \Lambda/\mathrm{p}$) was measured to be $S_3$ = 0.60 $\pm$ 0.13 (stat.) $\pm$ 0.21 (syst.) in 0-10% centrality events; this value is compared to different theoretical models. The measured $S_3$ is fully compatible with thermal model predictions. The measured $^{3}_{\Lambda}\mathrm H$ lifetime, $ \tau = 181^{+54}_{-39} (\mathrm{stat.}) \pm 33 (\mathrm{syst.})\ \mathrm{ps}$ is compatible within 1$\sigma$ with the world average value.

4 data tables

(Hypertriton + Anti-Hypertriton)dN/d(ct) distribution.

Hypertriton and Anti-hypertriton $p_{\rm T}$ spectra x B.R.

$B_2$ as a function of $p_{\rm T}$/A for Hypertriton.

More…

Rapidity and transverse-momentum dependence of the inclusive J/$\mathbf{\psi}$ nuclear modification factor in p-Pb collisions at $\mathbf{\sqrt{\textit{s}_{NN}}}=5.02$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 06 (2015) 055, 2015.
Inspire Record 1355544 DOI 10.17182/hepdata.70846

We have studied the transverse-momentum ($p_{\rm T}$) dependence of the inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, in three center-of-mass rapidity ($y_{\rm cms}$) regions, down to zero $p_{\rm T}$. Results in the forward and backward rapidity ranges ($2.03 < y_{\rm cms} < 3.53$ and $-4.46 <y_{\rm cms}< -2.96$) are obtained by studying the J/$\psi$ decay to $\mu^+\mu^-$, while the mid-rapidity region ($-1.37 < y_{\rm cms} < 0.43$) is investigated by measuring the ${\rm e}^+{\rm e}^-$ decay channel. The $p_{\rm T}$ dependence of the J/$\psi$ production cross section and nuclear modification factor are presented for each of the rapidity intervals, as well as the J/$\psi$ mean $p_{\rm T}$ values. Forward and mid-rapidity results show a suppression of the J/$\psi$ yield, with respect to pp collisions, which decreases with increasing $p_{\rm T}$. At backward rapidity no significant J/$\psi$ suppression is observed. Theoretical models including a combination of cold nuclear matter effects such as shadowing and partonic energy loss, are in fair agreement with the data, except at forward rapidity and low transverse momentum. The implications of the p-Pb results for the evaluation of cold nuclear matter effects on J/$\psi$ production in Pb-Pb collisions are also discussed.

9 data tables

$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the backward rapidity range (-4.46<$y_{\rm cms}$<-2.96). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.

$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the mid-rapidity range (-1.37<$y_{\rm cms}$<0.43). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.

$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the forward rapidity range (2.03<$y_{\rm cms}$<3.53). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.

More…

Measurement of pion, kaon and proton production in proton-proton collisions at $\sqrt{s}=7$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 75 (2015) 226, 2015.
Inspire Record 1357424 DOI 10.17182/hepdata.68129

The measurement of primary $\pi^{\pm}$, K$^{\pm}$, p and $\overline{p}$ production at mid-rapidity ($|y| <$ 0.5) in proton-proton collisions at $\sqrt{s} = 7$ TeV performed with ALICE (A Large Ion Collider Experiment) at the Large Hadron Collider (LHC) is reported. Particle identification is performed using the specific ionization energy loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/$c$ for pions, from 0.2 up to 6 GeV/$c$ for kaons and from 0.3 up to 6 GeV/$c$ for protons. The measured spectra and particle ratios are compared with QCD-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.

5 data tables

Combined transverse momentum spectra of PI, K and P, sum of particles and antiparticles, measured at mid-rapidity in pp collisions at SQRT(S) = 7 TeV normalized to the number of inelastic collisions. Statistical and systematic uncertainties are reported. The uncertainty due to the normalization to inelastic collisions (+7-4 %) is not included.

Kaon/Pion ratio in pp collisions at SQRT(S) = 7 TeV.

Proton/Pion ratio in pp collisions at SQRT(S) = 7 TeV.

More…

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Abbas, Ehab ; Abelev, Betty ; Adam, Jaroslav ; et al.
Phys.Lett.B 726 (2013) 610-622, 2013.
Inspire Record 1225979 DOI 10.17182/hepdata.68753

We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0-5%, 5-10%, 10-20%, and 20-30% most central events) in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, $-5.0 < \eta < 5.5$, and employing a special analysis technique based on collisions arising from LHC "satellite" bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles ($N_{\rm ch} = 17165 \pm 772$ for the 0-5% most central collisions). From the measured ${\rm d}N_{\rm ch}/{\rm d}\eta$ distribution we derive the rapidity density distribution, ${\rm d}N_{\rm ch}/{\rm d}y$, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models.

5 data tables

$\rm dN_{ch}/d\eta$ versus $\eta$ for different centralities. Errors are systematic as statistical errors are negligible.

Total number of produced charged particles extrapolated to beam rapidity as a function of the number of participating nucleons in the collision. Statistical errors are negligible. The first(sys) error is the correlated systematic error and the second is that which is uncorrelated to the other points.

$\rm dN_{ch}/d\eta$ per participant pair versus the number of participating nucleons in the collision for different eta ranges. Errors are systematic as statistical errors are negligible.

More…