Proton-proton collisions at 19.8 GeV/c

Abraham, F.F. ; Kalbach, R.M. ;
Nuovo Cim. 26 (1962) 717-728, 1962.
Inspire Record 1185008 DOI 10.17182/hepdata.37715

Elastic and inelastic 19.8 GeV/c proton-proton collisions in nuclear emulsion are examined using an external proton beam of the CERN Proton Synchrotron. Multiple scattering, blob density, range and angle measurements give the momentum spectra and angular distributions of secondary protons and pions. The partial cross-sections corresponding to inelastic interactions having two, four, six, eight, ten and twelve charged secondaries are found to be, respectively, (16.3±8.4) mb, (11.5 ± 6.0) mb, (4.3 ± 2.5) mb, (1.9 ± 1.3) mb, (0.5 ± 0.5) mb and (0.5±0.5)mb. The elastic cross-section is estimated to be (4.3±2.5) mb. The mean charged meson multiplicity for inelastic events is 3.7±0.5 and the average degree of inelasticity is 0.35±0.09. Strong forward and backward peaking is observed in the center-of-mass system for both secondary charged pions and protons. Distributions of energy, momentum and transverse momentum for identified charged secondaries are presented and compared with the results of work at other energies and with the results of a statistical theory of proton-proton collisions.

1 data table

No description provided.


Polarization in proton-beryllium and proton-proton scattering at 1.7 GeV

Bareyre, P. ; Detoeuf, J.F. ; Van Rossum, L. ; et al.
Nuovo Cim. 20 (1961) 1049-1066, 1961.
Inspire Record 1185005 DOI 10.17182/hepdata.37750

The polarization in p-Be and p-p scattering has been measured by counter techniques at a proton kinetic energy of 1.74 GeV. The maximum polarization in p-Be scattering was found to beP max==0.19±0.04 and occurs at an angleθ max⩾3.5°. Inelastic scatters were rejected when the inelastic momentum loss was more than about 1% in the first scatter (magnetic analysis) or more than about 5% in the second scatter (Čerenkov threshold counter). The maximum polarization in p-p scattering isP max=0.30±0.09 and occurs at an angle 35°<θ max<<55° (c.m.). The angular dependence of the polarization is consistent with a distribution proportional to sin 2θ within large statistical errors. Optical model calculations applied to the data on p-Be scattering yield an almost all imaginary central potential of about 43 MeV and a spin-orbit potential of between 0.9 MeV and 2.0 MeV which is also almost all imaginary, in contrast with the predominantly real spin-orbit potential needed to explain the large polarization in the region of several hundred MeV.

2 data tables

'1'. '2'. '3'. '4'.

'1'. '2'. '3'. '5'.



Search for solutions of the phase-shift analysis of pp interactions at 970 MeV

Vovchenko, V.G. ; Grebenyuk, O.G. ; Fedorov, O.Ya. ;
Yad.Fiz. 44 (1986) 456-459, 1986.
Inspire Record 239695 DOI 10.17182/hepdata.38007

A random search for solutions of the phase-shift analysis of pp scattering at 970 MeV is carried out. Solutions were selected according to the correct position of the zero of trajectory I of the Barrelet amplitude f1 in addition to the statistical criteria. Two pairs of solutions with similar phase shifts are found as a result. Two of these solutions have been found before

4 data tables

No description provided.

No description provided.

No description provided.

More…

Energy dependent measurements of the p p elastic analyzing power and narrow dibaryon resonances

Kobayashi, Y. ; Kobayashi, K. ; Nakagawa, T. ; et al.
Nucl.Phys.A 569 (1994) 791-820, 1994.
Inspire Record 320015 DOI 10.17182/hepdata.38528

The energy dependence of the pp elastic analyzing power has been measured using an internal target during polarized beam acceleration. The data were obtained in incident-energy steps varying from 4 to 17 MeV over an energy range from 0.5 to 2.0 GeV. The statistical uncertainty of the analyzing power is typically less than 0.01. A narrow structure is observed around 2.17 GeV in the two-proton invariant mass distribution. A possible explanation for the structure with narrow resonances is discussed.

1 data table

Statistical errors only.


Proton Proton Elastic Scattering from 150-MeV to 515-MeV

Bugg, D.V. ; Edgington, J.A. ; Amsler, Claude ; et al.
J.Phys.G 4 (1978) 1025, 1978.
Inspire Record 123232 DOI 10.17182/hepdata.38563

The parameters D, R, R' and P for pp elastic scattering have been measured in the centre-of-mass angular range 13 degrees to 58 degrees with an accuracy of about +or-0.02 at 209, 324, 379, 425 and 515 MeV. These results are incorporated with earlier data into a phase-shift analysis. Phase-shifts are generally in agreement with the theoretical predictions of the Paris group, although the F-wave spin-orbit combination is rather stronger than predicted. The fitted value for the pi 0pp coupling constant in g02=14.06+or-0.65.

6 data tables

No description provided.

No description provided.

No description provided.

More…

The Normalization of p p Polarization Between 200-MeV and 520-MeV

Amsler, C. ; Bugg, D.V. ; Axen, D. ; et al.
J.Phys.G 4 (1978) 1047-1053, 1978.
Inspire Record 135489 DOI 10.17182/hepdata.38559

The absolute normalisation of the polarisation in pp elastic scattering at 24 degrees lab has been determined by means of a double-scattering experiment to an accuracy of +or-1.5% at five energies between 200 and 520 MeV.

1 data table

No description provided.


Comparison of $\bar{p} p$ and $p p$ Elastic Scattering With $0.6-{\rm GeV}^ < t < 2.1-{\rm GeV}^2$ at the {CERN} {ISR}

Erhan, S. ; Smith, A.M. ; Meritet, L. ; et al.
Phys.Lett.B 152 (1985) 131-134, 1985.
Inspire Record 206289 DOI 10.17182/hepdata.30431

p p and pp elastic scattering differential cross sections are presented for momentum transfer 0.6< t <2.1 GeV 2 and √ s = 53 GeV. Measurements were made in the same apparatus at the CERN Intersecting Storage Rings. The p p and pp results are in statistical agreement with one another over the entire t range, although the point at t =1.32 GeV 2 is 1.5 σ above the pp data. The p p points appear to have the same shape as the predictions of Donnachie and Landshoff but are significantly lower in magnitude for 0.9< t <1.5 GeV 2 .

1 data table

No description provided.


The Real Part of the p-p and p-d Forward Scattering Amplitudes from 50 GeV to 400 GeV

Jenkins, E. ; Kuznetsov, A. ; Morozov, B. ; et al.
Phys.Rev.Lett. 41 (1978) 217, 1978.
Inspire Record 130086 DOI 10.17182/hepdata.11248

Proton-proton and proton-deuteron elastic scattering has been measured for incident laboratory energy from 50 to 400 GeV; minimum |t| values were, for p−p, 0.0005 (GeV/c)2, and for p−d, 0.0008 (GeV/c)2. From the differential cross sections we have determined the ratios of the real to imaginary parts of the forward scattering amplitude, ρpp and ρpd, for p−p and p−d scattering. Using a Glauber approach and a sum-of-exponentials form factor we obtain ρpn for p−n scattering.

18 data tables

No description provided.

No description provided.

FROM GLAUBER ANALYSIS. THE SYSTEMATIC ERRORS DUE TO THE UNCERTAINTY IN THE DEUTERON FORM FACTOR ARE COMPARABLE WITH THE STATISTICAL ERRORS.

More…

Polarization in elastic proton proton scattering between 0.86 and 2.74 gev/c

Albrow, M.G. ; Anderson-Almehed, S. ; Bosnjakovic, B. ; et al.
Nucl.Phys.B 23 (1970) 445-465, 1970.
Inspire Record 62367 DOI 10.17182/hepdata.8126

Polarization and differential cross section data for elastic proton-proton scattering between 0.86 and 2.74 GeV/ c are presented. A comparison is made with existing phase-shift analyses.

34 data tables

'ALL'.

More…