A Combined Analysis of the Hadronic and Leptonic Decays of the $\Z^0$

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 240 (1990) 497-512, 1990.
Inspire Record 294808 DOI 10.17182/hepdata.29720

We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of M z =91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γ z =2.536±0.045 GeV. The errors on M z have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γ ee =81.2±2.6 MeV, Γ μμ =82.6± 5.8 MeV, and Γ ττ =85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γ ℓ + ℓ − = 81.9±2.0 MeV. The hadronic partial width is Γ had =1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γ inv =453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.

4 data tables

Errors are statistical and point to point systematic luminosity error of 1 pct.

Measured values of e+ e- --> e+ e- cross section.

Corrected cross section. Corrections are for t-channel effects and loss of acollinear events near the boundary of the acceptance.

More…

A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

A Measurement of D meson production in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 533-546, 1993.
Inspire Record 356732 DOI 10.17182/hepdata.14375

A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.

6 data tables

Using full data sample.

Using full data sample with proper time > 1 ps to enrich (b bbar) content.

Data with Delta(L) > 1.

More…

A Measurement of Global Event Shape Distributions in the Hadronic Decays of the $\Z^0$

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 47 (1990) 505-522, 1990.
Inspire Record 295613 DOI 10.17182/hepdata.15152

We present measurements of global event shape distributions in the hadronic decays of theZ0. The data sample, corresponding to an integrated luminosity of about 1.3 pb−1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at theZ0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.

9 data tables

Corrected Thrust distribution.

Corrected Major distribution.

Corrected Minor distribution.

More…

A Measurement of K*+- (892) production in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 305 (1993) 407-414, 1993.
Inspire Record 342766 DOI 10.17182/hepdata.28930

Measurements are presented of the inclusive cross section for K ∗ (892) ± production in hadronic decays of the Z 0 using a sample of about half a million events recorded with the OPAL experiment at LEP. Charged K ∗ mesons are reconstructed in the decay channel K 0 S π ± . A mean rate of 0.72±0.02±0.08 K ∗ mesons per hadronic event is found. Comparison of the results with predictions of the JETSET and HERWIG models shows that JETSET overestimates the K ∗± production cross section while HERWIG is consistent with the data.

2 data tables

No description provided.

No description provided.


A Measurement of alpha-s from jet rates at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 71 (1993) 2528-2532, 1993.
Inspire Record 356912 DOI 10.17182/hepdata.19724

We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.

1 data table

The second systematic error comes from the theoretical uncertainties.


A Measurement of strange baryon production in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 291 (1992) 503-518, 1992.
Inspire Record 336771 DOI 10.17182/hepdata.29036

The production of the octet and decuplet baryons Λ, Ξ − , Σ (1385) ± , Ξ(1530) 0 and Ω − and the corresponding antibaryons has been measured in a sample of 485 000 hadronic Z 0 decays. Results on differential and integrated cross sections are presented. The differential cross section of Λ baryons is found to be softer than the one predicted by the Jetset and Herwig Monte Carlo generators. The measured decuplet yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is used. Comparisons of the momentum spectra for Λ and Ξ − with the predictions of an analytical QCD formula are also presented.

13 data tables

No description provided.

No description provided.

No description provided.

More…

A Measurement of the forward - backward charge asymmetry in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 294 (1992) 436-450, 1992.
Inspire Record 336774 DOI 10.17182/hepdata.29004

We present a measurement of the forward-backward charge asymmetry in hadronic decays of the Z 0 using data collected with the OPAL detector at LEP. The forward-backward charge asymmetry was measured using a weight function method which gave the number of forward events on a statistical basis. In a data sample of 448 942 hadronic Z 0 decays, we have observed a charge asymmetry of A h = 0.040±0.004 (stat.)±0.006 (syst.)±0.002 (B 0 B 0 mix.), taking into account the effect of B 0 B 0 mixing. In the framework of the standard model, this asymmetry corresponds to an effective weak mixing angle averaged over five quark flavours of sin 2 θ W = 0.2321 ± 0.0017 ( stat. ) ± 0.0027 ( syst. ) ± 0.0009 (B 0 B 0 mix.). The result agrees with the value obtained from the Z 0 line shape and lepton pair forward-backward asymmetry.

3 data tables

No description provided.

The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.

The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.


A Precise Determination of the Number of Families With Light Neutrinos and of the $Z$ Boson Partial Widths

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 235 (1990) 399-411, 1990.
Inspire Record 284411 DOI 10.17182/hepdata.29743

More extensive and precise results are reported on the parameters of Z decay. On the basis of 20 000 Z decays collected with the ALEPH detector at LEP we find M z =91.182±0.026 (exp.) ±0.030 (beam) GeV, Γ z =2.541±0.056 GeV and σ had 0 =41.4±0.8 nb. The partial widths for the hadronic and leptonic channels are Γ had =1804±44 MeV, Γ e + e − =82.1±3.4 MeV, Γ μ + μ − =87.9±6.0 MeV and Γ τ + τ − =86.1±5.6 MeV, in good agreement with the standard model. On the basis of the average leptonic width Γ ℓ + ℓ − =83.9±2.2 MeV, the effective weak mixing angle is found to be sin 2 θ w ( M z )=0.231±0.008. Usin g the partial widths calculated in the standard model, the number of light neutrino families is N ν =3.01±0.15 (exp.)±0.05 (theor.).

4 data tables

Penetrating charged particle track selection.

Calorimeter selection.

Average cross section.

More…