A measurement of the Higgs boson mass in the diphoton decay channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 805 (2020) 135425, 2020.
Inspire Record 1780985 DOI 10.17182/hepdata.93362

A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9 fb$^{-1}$ of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a center-of-mass energy of 13 TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be $m_\mathrm{H} =$ 125.78 $\pm$ 0.26 GeV. This is combined with a measurement of $m_\mathrm{H}$ already performed in the H $\to$ ZZ $\to$ 4$\ell$ decay channel using the same data set, giving $m_\mathrm{H} =$ 125.46 $\pm$ 0.16 GeV. This result, when further combined with an earlier measurement of $m_\mathrm{H}$ using data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of $m_\mathrm{H} =$ 125.38 $\pm$ 0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson.

1 data table

A summary of the mass of the Higgs boson measured in the H to GG and the H to ZZ to 4l decay channel, and for the combination of the two. These measurements have been carried out with the Run 1 and 2016 datasets as well as with them combined.


A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at $\sqrt s$ = 8 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 315, 2024.
Inspire Record 2698794 DOI 10.17182/hepdata.144246

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

10 data tables

Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.

Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.

Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.

More…

A search for $t\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2015) 148, 2015.
Inspire Record 1373299 DOI 10.17182/hepdata.70548

A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with $\Gamma/m =$ 15% decaying to $t\bar{t}$. These range from 2.5 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

16 data tables

Selection efficiency x Acceptance for a Z' resonance.

Selection efficiency x Acceptance for a KK gluon resonance.

Selection efficiency x Acceptance for a KK graviton resonance.

More…

ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 510, 2015.
Inspire Record 1380183 DOI 10.17182/hepdata.69366

This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb$^{-1}$ of collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV, although in some case an additional 4.7 fb$^{-1}$ of collision data at $\sqrt{s}$ = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models.

94 data tables

Summary of the ATLAS Run 1 searches for direct stop pair production in models where no supersymmetric particle other than the $\tilde t_1$ and the $\tilde \chi_1^0$ is involved in the $\tilde t_1$ decay. Lines for $\Delta m(\tilde t_1, \chi_1^0 ) > m_{t}$ - t0L/t1L combined observed limit hepdata.cedar.ac.uk/view/ins1380183/d63 - t0L/t1L combined expected limit hepdata.cedar.ac.uk/view/ins1380183/d64 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d19 - t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d20 - SC observed limit $m_t< m_{\tilde t_1} < 198$ GeV - SC expected limit $m_t< m_{\tilde t_1} < 184$ GeV Lines for $m_b + m_W < \Delta m(\tilde t_1, \chi_1^0 ) < m_{t}$ - t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d22 - t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d23 - t2L observed limit hepdata.cedar.ac.uk/view/ins1286444/d22 - t2L expected limit hepdata.cedar.ac.uk/view/ins1286444/d23 - WW observed limit hepdata.cedar.ac.uk/view/ins1380183/d47 - WW expected limit hepdata.cedar.ac.uk/view/ins1380183/d48 Lines for $0 < \Delta m(\tilde t_1, \chi_1^0 ) < m_b + m_W $ - tc observed limit hepdata.cedar.ac.uk/view/ins1304459 (root macro) - tc expected limit hepdata.cedar.ac.uk/view/ins1304459 (root macro) - t1L observed limit hepdata.cedar.ac.uk/view/ins1304456/d22 - t1L expected limit hepdata.cedar.ac.uk/view/ins1304456/d23 - WW observed limit hepdata.cedar.ac.uk/view/ins1380183/d47 - WW expected limit hepdata.cedar.ac.uk/view/ins1380183/d48.

Upper limits on the stop pair production cross sections for different values of the branching ratios for the decays $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ and $\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0$, where BR$(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0)$ + BR$(\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0)$ = 1. Signal points with $\Delta m (\tilde{t}_1, \tilde{\chi}_1^0)$ of 10 GeV are shown. The limits quoted are taken from the best performing, based on expected exclusion CLs, signal regions from the tc-M, tc-C, t1L-bCa_low and WW analyses at each mass point. - Theoretical cross section from twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections8TeVstopsbottom.

Upper limits on the stop pair production cross sections for different values of the branching ratios for the decays $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ and $\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0$, where BR$(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0)$ + BR$(\tilde{t}_1 \rightarrow ff'b\tilde{\chi}_1^0)$ = 1. Signal points with $\Delta m (\tilde{t}_1, \tilde{\chi}_1^0)$ of 80 GeV are shown. The limits quoted are taken from the best performing, based on expected exclusion CLs, signal regions from the tc-M, tc-C, t1L-bCa_low and WW analyses at each mass point. - Theoretical cross section from twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections8TeVstopsbottom.

More…

Analysis of events with $b$-jets and a pair of leptons of the same charge in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2015) 150, 2015.
Inspire Record 1361912 DOI 10.17182/hepdata.67661

An analysis is presented of events containing jets including at least one $b$-tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 8$ TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced rate of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral $b^\prime$-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral $b^\prime$-quarks, but the significance of the discrepancy is less than two standard deviations. The discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models.

10 data tables

Observed and expected number of events with statistical (first) and systematic (second) uncertainties for the positively charged top pair signal selection. The p-values for agreement between the observed yield and the expected background in each signal region are reported.

Observed and expected number of events with statistical (first) and systematic (second) uncertainties for five of the signal regions defined for VLQ, chiral bprime-quark and four-top-quark production searches. The p-values for agreement between the observed yield and the expected background in each signal region are reported.

Observed and expected number of events with statistical (first) and systematic (second) uncertainties for three of the signal regions defined for VLQ, chiral bprime-quark and four-top-quark production searches. The p-values for agreement between the observed yield and the expected background in each signal region are reported.

More…

Angular analysis of the decay B$^+$ $\to$ K$^*$(892)$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 04 (2021) 124, 2021.
Inspire Record 1826544 DOI 10.17182/hepdata.99387

Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.

1 data table

The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.


Angular analysis of the decay B$^+$$\to$ K$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 98 (2018) 112011, 2018.
Inspire Record 1676212 DOI 10.17182/hepdata.85741

The angular distribution of the flavor-changing neutral current decay B$^+$$\to$ K$^+\mu^+\mu^-$ is studied in proton-proton collisions at a center-of-mass energy of 8 TeV. The analysis is based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb$^{-1}$. The forward-backward asymmetry $A_{\mathrm{FB}}$ of the dimuon system and the contribution $F_{\mathrm{H}}$ from the pseudoscalar, scalar, and tensor amplitudes to the decay width are measured as a function of the dimuon mass squared. The measurements are consistent with the standard model expectations.

3 data tables

Figure 5a. Results of the $A_{FB}$ measurements in ranges of q2. 0 ≤ $F_{H}$ ≤ 3 and |$A_{FB}$| ≤ min(1, $F_{H}$/2).

Figure 5b. Results of the $F_{H}$ measurements in ranges of q2. 0 ≤ $F_{H}$ ≤ 3 and |$A_{FB}$| ≤ min(1, $F_{H}$/2).

Table 2. Results of the fit for each q2 range, together with several SM predictions. The inclusive $q^{2}$ = 1.00–22.00 $GeV^{2}$ range in the bottom line does not include events from the J/ψ and ψ(2S) resonance regions.


Angular analysis of the decay B0 to K*0 mu mu from pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 753 (2016) 424-448, 2016.
Inspire Record 1385600 DOI 10.17182/hepdata.17057

The angular distributions and the differential branching fraction of the decay B0 to K*0(892) mu mu are studied using data corresponding to an integrated luminosity of 20.5 inverse femtobarns collected with the CMS detector at the LHC in pp collisions at sqrt(s) = 8 TeV. From 1430 signal decays, the forward-backward asymmetry of the muons, the K*0(892) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the dimuon invariant mass squared. The measurements are among the most precise to date and are in good agreement with standard model predictions.

2 data tables

The measured values of signal yield, FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared. The (FL,AFB) correlation factors are also shown.

The measured values of FL, AFB, and differential branching fraction in bins of the dimuon invariant mass squared, combining the 7 TeV and 8 TeV results.


Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ as a function of transverse momentum and rapidity

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 750 (2015) 154-175, 2015.
Inspire Record 1359451 DOI 10.17182/hepdata.69285

Measurements of the five most significant angular coefficients, A[0] through A[4], for Z bosons produced in pp collisions at $\sqrt{s}$ = 8 TeV and decaying to $\mu^+ \mu^-$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 inverse femtobarns. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

2 data tables

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for |y| < 1.

The five angular coefficients A0 to A4 and A0-A2 in bins of qT for 1 < |y| < 2.1.


Charged-particle distributions in $pp$ interactions at $\sqrt{s}=8$ TeV measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 76 (2016) 403, 2016.
Inspire Record 1426695 DOI 10.17182/hepdata.73012

This paper presents measurements of distributions of charged particles which are produced in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of $160 \mathrm{\mu b^{-1}}$ was used. A minimum-bias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and charged-particle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state.

15 data tables

Central primary-charged-particle density 1/Nev dNch/deta at eta = 0 for five different phase spaces. The results are given for the fiducial definition tau > 300 ps, as well as for the previously used fiducial definition tau > 30 ps using an extrapolation factor of 1.012 +- 0.004 (for pT > 100 MeV) or 1.025 +- 0.008 (for pT > 500 MeV), which accounts for the fraction of charged strange baryons predicted by Epos LHC simulation.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=2 having transverse momentum >100 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicity distributions in proton-proton collisions at a centre-of mass energy of 8000 GeV for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…