Small-angle proton - proton scattering cross-sections at 144 MeV

Jarvis, O.N. ; Whitehead, C. ; Shah, M. ;
Phys.Lett.B 36 (1971) 409-411, 1971.
Inspire Record 1388795 DOI 10.17182/hepdata.28406

The differential cross-section in proton-proton scattering at 144 ± 1.5 MeV has been measured over the Coulomb-nuclear interference region. When the present data are included in a phase-shift analysis the resultant phas-shifts are only slightly changed from their previous values.

1 data table

No description provided.


Soft $\pi^- p$ and $p p$ Elastic Scattering in the Energy Range 30-{GeV} to 345-{GeV}

Burq, J.P. ; Chemarin, M. ; Chevallier, M. ; et al.
Nucl.Phys.B 217 (1983) 285-335, 1983.
Inspire Record 182455 DOI 10.17182/hepdata.7556

Differential cross sections for π − p and pp elastic scattering have been measured at incident momenta ranging from 30 to 345 GeV and in the t range 0.002 (GeV/ c ) 2 ⩽ | t | ⩽ 0.04 (GeV/ c ) 2 . From the analysis of the data, the ratio ϱ ( t = 0) of the real to the imaginary parts of the forward scattering amplitude was determined together with the logarithmic slope b of the diffraction cone.

13 data tables

No description provided.

No description provided.

No description provided.

More…

Spin Dependence of High p-Transverse**2 Elastic p p Scattering

Crabb, D.G. ; Fernow, Richard C. ; Hansen, P.H. ; et al.
Phys.Rev.Lett. 41 (1978) 1257, 1978.
Inspire Record 7117 DOI 10.17182/hepdata.20867

We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.

1 data table

THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).


Spin Effects in $p p$ Elastic Scattering at 28-{GeV}/$c$

Hansen, P.H. ; O'Fallon, J.R. ; Danby, G.T. ; et al.
Phys.Rev.Lett. 50 (1983) 802, 1983.
Inspire Record 182130 DOI 10.17182/hepdata.20535

The analyzing power, A, was measured in proton-proton elastic scattering with use of a polarized proton target and 28-GeV/c primary protons from the alternating-gradient synchrotron. Over the P⊥2 range of 0.5 to 2.8 (GeV/c)2, the data show interesting structure. There is a rather sharp dip at P⊥2=0.8 (GeV/c)2 corresponding to the break in the elastic differential cross section at the end of the diffraction peak.

1 data table

No description provided.


Spin Spin Forces in 6-{GeV}/$c$ Neutron - Proton Elastic Scattering

Crabb, D.G. ; Hansen, P.H. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 43 (1979) 983, 1979.
Inspire Record 141922 DOI 10.17182/hepdata.20753

Measurement was made of dσdt for n↑+p↑→n+p at P⊥2=0.8 and 1.0 (GeV/c)2 at 6 GeV/c. The 6-GeV/c 53%-polarized neutrons from the 12-GeV/c polarized deuteron beam at the Argonne zero-gradient synchroton were scattered from our 75%-polarized proton target. Both spins were oriented perpendicular to the scattering plane. We found large unexpected spin-spin effects in n−p elastic scattering which are quite different from the p−p spin-spin effects.

1 data table

No description provided.


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table

No description provided.


Spin correlation measurements for p (polarized) + p (polarized) elastic scattering at 497.5-MeV

Hoffmann, G.W. ; Barlett, M.L. ; Kielhorn, W. ; et al.
Phys.Rev.C 49 (1994) 630-632, 1994.
Inspire Record 383760 DOI 10.17182/hepdata.25964

The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.

1 data table

Errors include statistical and systematic uncertainties.


Structure in the angular distribution of high energy proton-proton scattering

Allaby, J.V. ; Binon, F.G. ; Diddens, A.N. ; et al.
Phys.Lett.B 28 (1968) 67-71, 1968.
Inspire Record 54033 DOI 10.17182/hepdata.29155

Results are presented on measurements of elastic proton-proton scattering at 19.2 and 21.1 GeV/ c in the angular region where previously structure had been observed at lower energies.

1 data table

'1'. '2'. '3'.


Study of $p p$ Interactions in the Momentum Range 0.9-{GeV}/$c$ to 2.0-{GeV}/$c$

Shimizu, F. ; Koiso, H. ; Kubota, Y. ; et al.
Nucl.Phys.A 389 (1982) 445-456, 1982.
Inspire Record 12089 DOI 10.17182/hepdata.37051

pp interactions at 11 momenta in the range 0.9 to 2.0 GeV/ c have been studied. The elastic angular distributions, covering the c.m. angular range 22°–90°, agree in general with Hoshizaki's phase-shift analysis which shows the looping 1 D in and 3 F 3 amplitudes in the Argand diagram. About 80% of pn π + events come from the n Δ ++ state at all momenta above 1.2 GeV/ c . The behavior of the density matrix elements of the Δ ++ show no momentum or angular dependence. A large fraction of pp π 0 events also come from the p Δ + state at all momenta above 1.2 GeV/ c . The behavior of the Δ + density matrix elements is similar to that for the case of Δ ++ .

3 data tables

No description provided.

No description provided.

No description provided.


Study of the $\Lambda$-$\Lambda$ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 797 (2019) 134822, 2019.
Inspire Record 1735349 DOI 10.17182/hepdata.90845

This work presents new constraints on the existence and the binding energy of a possible $\Lambda$-$\Lambda$ bound state, the H-dibaryon, derived from $\Lambda$-$\Lambda$ femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at $\sqrt{s}=13$ TeV and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV, combined with previously published results from p-Pb collisions at $\sqrt{s}=7$ TeV. The $\Lambda$-$\Lambda$ scattering parameter space, spanned by the inverse scattering length $f_0^{-1}$ and the effective range $d_0$, is constrained by comparing the measured $\Lambda$-$\Lambda$ correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the $\Lambda$-$\Lambda$ interaction. The region in the $(f_0^{-1},d_0)$ plane which would accommodate a $\Lambda$-$\Lambda$ bound state is substantially restricted compared to previous studies. The binding energy of the possible $\Lambda$-$\Lambda$ bound state is estimated within an effective-range expansion approach and is found to be $B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\mathrm{(stat)}^{+1.8}_{-1.0}\mathrm{(syst)}$ MeV.

8 data tables

p-p correlation function in p-p collisions at $\sqrt{s}=13$ TeV.

$\Lambda$-$\Lambda$ correlation function in p-p collisions at $\sqrt{s}=13$ TeV.

$\Lambda$-$\Lambda$ correlation function in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV.

More…