Measurement of the production cross section for Z/gamma* in association with jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 032009, 2012.
Inspire Record 945498 DOI 10.17182/hepdata.58228

Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

24 data tables

Cross section for Inclusive Jet Multiplicity corrected to the lepton common fiducial region and for QED radiation effects.

Ratio of cross sections for N/N-1 inclusive jet multiplicities corrected to the lepton common fiducial region and for QED radiation effects.

Inclusive jet differential cross section dsigma/dpt corrected to the lepton common fiducial region and for QED radiation effects.

More…

Measurement of W^+W^- production in pp collisions at sqrt{s}=7 TeV with the ATLAS detector and limits on anomalous WWZ and WWgamma couplings

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Rev.D 87 (2013) 112001, 2013.
Inspire Record 1190187 DOI 10.17182/hepdata.61738

This paper presents a measurement of the W^+W^- production cross section in pp collisions at sqrt{s}=7 TeV. The leptonic decay channels are analyzed using data corresponding to an integrated 4.6 fb-1 collected with the ATLAS detector at the Large Hadron Collider. The W^+W^- production cross section sigma(pp -> W^+W^-+X) is measured to be 51.9 +- 2.0 (stat) +- 3.9 (syst) +- 2.0 (lumi) pb, compatible with the Standard Model prediction of 44.7 +2.1 -1.9 pb. A measurement of the normalized fiducial cross section as a function of the leading lepton transverse momentum is also presented. The reconstructed transverse momentum distribution of the leading lepton is used to extract limits on anomalous WWZ and WWgamma couplings.

5 data tables

The measured fiducial cross section in the three channels . The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.

The measured total cross section in the three channels. The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.

The measured total cross section (combined). The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.

More…

Measurement of ZZ production in pp collisions at sqrt(s)=7 TeV and limits on anomalous ZZZ and ZZgamma couplings with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 03 (2013) 128, 2013.
Inspire Record 1203852 DOI 10.17182/hepdata.62535

A measurement of the ZZ production cross section in proton-proton collisions at sqrt(s) = 7 TeV using data recorded by the ATLAS experiment at the Large Hadron Collider is presented. In a data sample corresponding to an integrated luminosity of 4.6 fb-1 collected in 2011, events are selected that are consistent either with two Z bosons decaying to electrons or muons or with one Z boson decaying to electrons or muons and a second Z boson decaying to neutrinos. The ZZ*->llll and ZZ->llnunu cross sections are measured in restricted phase-space regions. These results are then used to derive the total cross section for ZZ events produced with both Z bosons in the mass range 66 to 116 GeV, sigmaZZtot = 6.7 +-0.7 +0.4-0.3 +-0.3 pb, which is consistent with the Standard Model prediction of 5.89+0.22-0.18 pb calculated at next-to-leading order in QCD. The normalized differential cross sections in bins of various kinematic variables are presented. Finally, the differential event yield as a function of the transverse momentum of the leading Z boson is used to set limits on anomalous neutral triple gauge boson couplings in ZZ production.

8 data tables

The measured fiducial cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

The measured total cross sections. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.

Normalized ZZ fiducial cross section (multiplied by 10^6 for readability) in bins of the leading reconstructed dilepton pT for the 4 lepton channel. The first systematic uncertainty is detector systematics, the second is background systematic uncertainties.

More…

The differential production cross section of the phi(1020) meson in sqrt(s)=7 TeV pp collisions measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Eur.Phys.J.C 74 (2014) 2895, 2014.
Inspire Record 1282441 DOI 10.17182/hepdata.64728

A measurement is presented of the phi to K+K- production cross section at sqrt(s) = 7 TeV using pp collision data corresponding to an integrated luminosity of 383 mub-1, collected with the ATLAS experiment at the LHC. Selection of phi(1020) mesons is based on the identification of charged kaons by their energy loss in the pixel detector. The differential cross section is measured as a function of the transverse momentum, pTphi, and rapidity, |yphi|, of the phi(1020) meson in the fiducial region 500 < pTphi< 1200 MeV, |yphi| < 0.8, kaon pTK> 230 MeV and kaon momentum pK< 800 MeV.The integrated phi(1020)-meson production cross section in this fiducial range is measured to be s(phi K+K-) = 570 pm 8 (stat) pm 66 (syst) pm 20 (lumi) mub.

3 data tables

The differential PHI(1020) meson production cross section measured in the fiducial region as a function of the PHI(1020) transverse momentum.

The differential PHI(1020) meson production cross section measured in the fiducial region as a function of the PHI(1020) rapidity.

The integrated PHI(1020) meson production cross section in the fiducial region.


Measurement of the production of a W boson in association with a charm quark in pp collisions at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 05 (2014) 068, 2014.
Inspire Record 1282447 DOI 10.17182/hepdata.63197

The production of a W boson in association with a single charm quark is studied using 4.6 fb^-1 of pp collision data at sqrt(s)=7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96 +0.26 -0.30 at Q^2=1.9 GeV^2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W^+ + bar{c})/sigma(W^- + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-bar{s} quark asymmetry.

17 data tables

Measured integrated cross sections of the production of a W boson with a single c-jet, a D meson or a D* meson times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured integrated cross section ratios of the production of W+ and W- bosons associated with a single c-jet, a D meson or a D* meson in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. Jets are not required for the W+D/D* cross sections. The cross sections are defined for OS-SS events.

Measured differential cross sections as function of the lepton pseudo-rapidity of the production of a W boson with a single c-jet times the branching ratio W -> l nu in the fiducial regions together with the statistical and systematic uncertainties. For the W+c-jet cross sections events with more than one c-jet are discarded. The particle-level c-jet is defined as the one containing a weakly decaying c-hadron with pt>5 GeV, within DeltaR<0.3. Jets containing c-hadrons originating from b-hadron decays are not counted as c-jets. The cross sections are defined for OS-SS events.

More…

Measurement of chi_c1 and chi_c2 production with sqrt(s) = 7 TeV pp collisions at ATLAS

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
JHEP 07 (2014) 154, 2014.
Inspire Record 1292798 DOI 10.17182/hepdata.64242

The prompt and non-prompt production cross-sections for the chi_c1 and chi_c2 charmonium states are measured in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the LHC using 4.5 fb^-1 of integrated luminosity. The chi_c states are reconstructed through the radiative decay chi_c -> J/psi gamma (with J/psi -> mu+mu-) where photons are reconstructed from gamma -> e+e- conversions. The production rate of the chi_c2 state relative to the chi_c1 state is measured for prompt and non-prompt chi_c as a function of J/psi transverse momentum. The prompt chi_c cross-sections are combined with existing measurements of prompt J/psi production to derive the fraction of prompt J/psi produced in feed-down from chi_c decays. The fractions of chi_c1 and chi_c2 produced in b-hadron decays are also measured.

13 data tables

Differential cross-section for prompt chi_c1 production, measured in bins of J/psi pT, assuming unpolarised chi_c production. The measurements are not corrected for the branching fractions of the decays chi_c --> J/psi + gamma and J/psi --> mu+ mu-. The uncertainty envelope associated with the unknown chi_c spin alignment is also shown.

Differential cross-section for prompt chi_c2 production, measured in bins of J/psi pT, assuming unpolarised chi_c production. The measurements are not corrected for the branching fractions of the decays chi_c --> J/psi + gamma and J/psi --> mu+ mu-. The uncertainty envelope associated with the unknown chi_c spin alignment is also shown.

Differential cross-section for non-prompt chi_c1 production, measured in bins of J/psi pT, assuming unpolarised chi_c production. The measurements are not corrected for the branching fractions of the decays chi_c --> J/psi + gamma and J/psi --> mu+ mu-. The uncertainty envelope associated with the unknown chi_c spin alignment is also shown.

More…

Version 2
Comprehensive measurements of $t$-channel single top-quark production cross sections at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112006, 2014.
Inspire Record 1303905 DOI 10.17182/hepdata.64385

This article presents measurements of the $t$-channel single top-quark ($t$) and top-antiquark ($\bar{t}$) total production cross sections $\sigma(tq)$ and $\sigma(\bar{t}q)$, their ratio $R_{t}=\sigma(tq)/\sigma(\bar{t}q)$, and a measurement of the inclusive production cross section $\sigma(tq + \bar{t}q)$ in proton--proton collisions at $\sqrt{s} = 7$ TeV at the LHC. Differential cross sections for the $tq$ and $\bar{t}q$ processes are measured as a function of the transverse momentum and the absolute value of the rapidity of $t$ and $\bar{t}$, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb$^{-1}$. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are $\sigma(tq)= 46\pm 6\; \mathrm{pb}$, $\sigma(\bar{t}q)= 23 \pm 4\; \mathrm{pb}$, $R_{t}=2.04\pm 0.18$, and $\sigma(tq + \bar{t}q)= 68 \pm 8\; \mathrm{pb}$, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on $R_{t}$ is mainly statistical. Using the ratio of $\sigma(tq + \bar{t}q)$ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation $|V_{tb}|\gg |V_{ts}|, |V_{td}|$, we determine $|V_{tb}|=1.02 \pm 0.07$.

40 data tables

Differential t-channel top-quark production cross sections and normalized differential t-channel top-quark production cross sections as functions of PT(TOP).

Predicted and observed events yields for the 2-jet and 3-jet channels considered in this measurement. The multijet background is estimated using data-driven techniques (see Sec. VB); an uncertainty of $50\%$ is applied. All the other expectations are derived using theoretical cross sections and their uncertainties (see Secs. VA and VC in the paper).

Differential t-channel top-quark production cross sections and normalized differential t-channel top-quark production cross sections as functions of PT(TOPBAR).

More…

Measurement of differential production cross-sections for a $Z$ boson in association with $b$-jets in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2014) 141, 2014.
Inspire Record 1306294 DOI 10.17182/hepdata.65389

Measurements of differential production cross-sections of a $Z$ boson in association with $b$-jets in $pp$ collisions at $\sqrt{s}=7$ TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a $Z$ boson decaying into an electron or muon pair, and containing $b$-jets. For events with at least one $b$-jet, the cross-section is presented as a function of the $Z$ boson transverse momentum and rapidity, together with the inclusive $b$-jet cross-section as a function of $b$-jet transverse momentum, rapidity and angular separations between the $b$-jet and the $Z$ boson. For events with at least two $b$-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum $b$-jets, and as a function of the $Z$ boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

28 data tables

Integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

Breakdown of systematic uncertainties (in %) for the integrated $Z+\ge 1$ $b$-jet cross-section and the integrated inclusive $b$-jet cross-sections.

The inclusive $b$-jet cross-section $\sigma(Zb)\times N_{b\text{-jet}}$ as a function of $b$-jet $p_T$ together with the corresponding non-perturbative corrections.

More…

Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

57 data tables

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of transverse momentum of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of absolute rapidity of diphoton system. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

More…

Measurement of the production cross-section of $\psi(2S)\to J/\psi(\to\mu^+\mu^-)\pi^+\pi^-$ in $pp$ collisions at $\sqrt{s}=7$ TeV at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 079, 2014.
Inspire Record 1307103 DOI 10.17182/hepdata.69188

The prompt and non-prompt production cross-sections for $\psi(2S)$ mesons are measured using 2.1 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The measurement exploits the $\psi(2S)\to J/\psi(\to\mu^+\mu^-)\pi^+\pi^-$ decay mode, and probes $\psi(2S)$ mesons with transverse momenta in the range $10\leq p_T<100$ GeV and rapidity $|y|<2.0$. The results are compared to other measurements of $\psi(2S)$ production at the LHC and to various theoretical models for prompt and non-prompt quarkonium production.

9 data tables

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $0\leq |y| < 0.75$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $0.75\leq |y| < 1.5$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

Non-prompt $\psi(2\mathrm{S})$ production fraction as a function of $\psi(2\mathrm{S})$ $p_{\rm T}$ for $\psi(2\mathrm{S})$ rapidity interval of $1.5\leq |y| < 2$. The first uncertainty is statistical, the second is systematic. Spin-alignment uncertainties are not included.

More…