Measurement of the inclusive jet cross-section in p anti-p collisions at s**(1/2) =1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 101 (2008) 062001, 2008.
Inspire Record 779574 DOI 10.17182/hepdata.57758

We report on a measurement of the inclusive jet cross section in $p \bar{p}$ collisions at a center-of-mass energy $\sqrt s=$1.96 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider corresponding to an integrated luminosity of 0.70 fb$^{-1}$. The data cover jet transverse momenta from 50 GeV to 600 GeV and jet rapidities in the range -2.4 to 2.4. Detailed studies of correlations between systematic uncertainties in transverse momentum and rapidity are presented, and the cross section measurements are found to be in good agreement with next-to-leading order QCD calculations.

36 data tables

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.0 to 0.4 for cone radius R = 0.7.

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.4 to 0.8 for cone radius R = 0.7.

Measured inclusive jet cross section as a function of jet transverse momentum for absolute values of the jet rapidity from 0.8 to 1.2 for cone radius R = 0.7.

More…

A Study of the strong coupling constant using W + jets processes

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3226-3231, 1995.
Inspire Record 394610 DOI 10.17182/hepdata.42454

The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

1 data table

Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.


Transverse energy distributions within jets in p anti-p collisions at S**(1/2) = 1.8-Tev

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 357 (1995) 500-508, 1995.
Inspire Record 398175 DOI 10.17182/hepdata.42372

The distribution of the transverse energy in jets has been measured in p p collisions at s =1.8 TeV TeV using the DØ detector at Fermilab. This measurement of the jet shape is made as a function of jet transverse energy in both the central and forward rapidity regions. Jets are shown to narrow both with increasing transverse energy and with increasing rapidity. Next-to-leading order partonic QCD calculations are compared to the data. Although the calculations qualitatively describe the data, they are shown to be very dependent on renormalization scale, parton clustering algorithm, and jet direction definition and they fail to describe the data in all regions consistently.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Jet production via strongly interacting color singlet exchange in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 76 (1996) 734-739, 1996.
Inspire Record 400107 DOI 10.17182/hepdata.42348

A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.

1 data table

'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.


Studies of topological distributions of inclusive the three and four jet events in anti-P P collisions at s**(1/2) = 1800-GeV with the D0 detector

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 53 (1996) 6000-6016, 1996.
Inspire Record 399364 DOI 10.17182/hepdata.11124

The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.

29 data tables

The estimated systematic uncertainty is 6 PCT.

The estimated systematic uncertainty is 6 PCT.

The estimated systematic uncertainty is 6 PCT.

More…

Measurement of dijet angular distributions and search for quark compositeness

The D0 collaboration Abbott, B. ; Abolins, M. ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.Lett. 80 (1998) 666-671, 1998.
Inspire Record 445265 DOI 10.17182/hepdata.42185

We have measured the dijet angular distribution in $\sqrt{s}$=1.8 TeV $p\bar{p}$ collisions using the D0 detector. Order $\alpha^{3}_{s}$ QCD predictions are in good agreement with the data. At 95% confidence the data exclude models of quark compositeness in which the contact interaction scale is below 2 TeV.

1 data table

No description provided.


The Dijet mass spectrum and a search for quark compositeness in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2457-2462, 1999.
Inspire Record 473420 DOI 10.17182/hepdata.42143

Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we have measured the inclusive dijet mass spectrum in the central pseudorapidity region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| < 1.0). The order alpha_s^3 QCD predictions are in good agreement with the data and we rule out models of quark compositeness with a contact interaction scale < 2.4 TeV at the 95% confidence level.

2 data tables

Dijet cross section for ABS(ETARAP)<1.0.

Ratio of cross sections for ABS(ETARAP) < 0.5 / 0.5 < ABS(ETARAP) < 1.0.


The Inclusive jet cross-section in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 2451-2456, 1999.
Inspire Record 473457 DOI 10.17182/hepdata.42154

We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.

2 data tables

Inclusive cross section for ABS(ETARAP)<0.5. The quoted systematic (DSYS) errors do not include the luminosity uncertainty of 6.1 PCT.

Inclusive cross section for 0.1<=ABS(ETARAP)<=0.7. Data are taken from the AIP E-PAPS ftp site shown above. The quoted (DSYS) errors are the total systematic errors including the luminosity uncertainty.


Probing hard color singlet exchange in p anti-p collisions at S**(1/2) = 630-GeV and 1800-GeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Lett.B 440 (1998) 189-202, 1998.
Inspire Record 476389 DOI 10.17182/hepdata.42131

We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.

2 data tables

Colour-singlet fraction at 1.8 TeV.

Ratio of colour-singlet fractions between 630 and 1800 GeV.


Spin correlation in t anti-t production from p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 85 (2000) 256-261, 2000.
Inspire Record 524260 DOI 10.17182/hepdata.42996

The D0 collaboration has performed a study of spin correlation in tt-bar production for the process tt-bar to bb-bar W^+W^-, where the W bosons decay to e-nu or mu-nu. A sample of six events was collected during an exposure of the D0 detector to an integrated luminosity of approximately 125 pb^-1 of sqrt{s}=1.8 TeV pp-bar collisions. The standard model (SM) predicts that the short lifetime of the top quark ensures the transmission of any spin information at production to the tt-bar decay products. The degree of spin correlation is characterized by a correlation coefficient k. We find that k>-0.25 at the 68% confidence level, in agreement with the SM prediction of k=0.88.

1 data table

No description provided.