Pion-Nucleon Total Cross Sections from 0.5 to 2.65 GeV/c

Carter, A.A. ; Riley, K.F. ; Tapper, R.J. ; et al.
Phys.Rev. 168 (1968) 1457-1465, 1968.
Inspire Record 54182 DOI 10.17182/hepdata.250

Total cross sections of π+ and π− mesons on protons and deuterons have been measured in a transmission experiment to relative accuracies of ±0.2% over the laboratory momentum range 0.46-2.67 GeV/c. The systematic error is estimated to be about ±0.5% over most of the range, increasing to about ±2% near both ends. Data have been obtained at momentum intervals of 25-50 MeV/c with a momentum resolution of ±0.6%. No new structure is observed in the π±p total cross sections, but results differ in several details from previous experiments. From 1-2 GeV/c, where systematic erros are the smallest, the total cross section of π− mesons on deuterons is found to be consistently higher than that of π+ mesons by (1.3±0.3)%; about half of this difference may be understood in terms of Coulomb-barrier effects. The πd and πN total cross sections are used to check the validity of the Glauber theory. Substantial disagreements (up to 2 mb) are observed, and the conclusion is drawn that the Glauber theory is inadequate in this momentum range.

2 data tables

No description provided.

No description provided.


Elastic Electron-Proton Scattering at Momentum Transfers up to 110 Fermi$^−^2$

Behrend, H.J. ; Brasse, F.W. ; Engler, J. ; et al.
Nuovo Cim.A 48 (1967) 140-164, 1967.
Inspire Record 1185336 DOI 10.17182/hepdata.1060

Using the internal beam of DESY elastic electron-proton cross-sections were measured at various angles between 32° and 130°, and with momentum transfers ofq 2=39, 60, 80 and 110 fm−2. Two single-quadrupole spectrometers, movable around a common liquid-hydrogen target, were used for analysing the momentum of the scattered electrons. Čerenkov and shower counters discriminated against pion and low-energy background. As a cross-section reference, recoil protons from elastic scattering atq 2=10 fm−2 were used, with a quantameter serving as an intermediate monitor. The data are consistent with the Rosenbluth formula, giving real form factorsG E andG M . Both continue to decrease with increasing momentum transfer, but somewhat faster than indicated by measurements performed so far.

9 data tables

No description provided.

No description provided.

No description provided.

More…

No description provided.

No description provided.

No description provided.

More…

Elastic-Differential Cross Section of pi++p at 1.5, 2.0, and 2.5 BeV/c

Cook, Victor ; Cork, Bruce ; Holley, William R. ; et al.
Phys.Rev. 130 (1963) 762-765, 1963.
Inspire Record 944975 DOI 10.17182/hepdata.599

We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Pi- p elastic scattering between 1.7 and 2.5 gev/c

Hill, R.E. ; Booth, N.E. ; Esterling, R.J. ; et al.
Phys.Rev.D 1 (1970) 729-758, 1970.
Inspire Record 61850 DOI 10.17182/hepdata.4893

The polarization and the differential cross section in π−p elastic scattering have been measured at incident pion laboratory momenta of 1.70, 1.88, 2.07, 2.27, and 2.50 GeV/c. The experiment was carried out at the Argonne zero-gradient synchrotron with a polarized proton target. Details of the apparatus and data analysis are presented here together with the final results. A partial-wave analysis of the data has verified the JP=72+ assignment for the Δ(1950) and established a JP=72− assignment for the N(2190). It does not support a JP=112+ assignment for the Δ(2460), nor does it give support for some of the possible resonances found in the CERN phase-shift analysis. Apart from the resonance behavior, the partial-wave analysis reveals several new features. We find a striking correlation among the various partial-wave amplitudes at the highest energy, which is different for J=l+12 and J=l−12. In addition, several fixed-(−t) features of high-energy scattering emerge in the energy region of this analysis.

12 data tables

No description provided.

No description provided.

No description provided.

More…

Study of neutral final states produced in pi-minus p collisions at momenta of 1.71-2.46 gev/c

Carroll, A.S. ; Corbett, I.F. ; Damerell, C.J.S. ; et al.
Phys.Rev. 177 (1969) 2047-2066, 1969.
Inspire Record 55660 DOI 10.17182/hepdata.5504

We have studied neutral final states produced in π−p collisions at momenta of 1.71, 1.89, 2.07, 2.27, and 2.46 GeVc, by observing the γ rays emitted. In particular, measurements are presented of (i) π−p→π0n, for which the Regge-pole fit at momenta ≥5.9 GeVc also agrees rather well here; (ii) π−p→η0n, for which the Regge model which fits at higher energies does not agree here; (iii) π−p→π0γn, in which there is some evidence for a diffraction dissociation process as well as ω0-meson production; (iv) π−p→π0π0n, which is dominated by production of N*0(1236)π0 and by peripheral production of pion pairs. In (iv), the former process is found to fit with the same Reggeized ρ-meson exchange model as charge-exchange scattering, while the latter gives indication of the s-wave ππ interaction. An account is given of new techniques, particularly in the data analysis, which were developed in the course of this work.

6 data tables

No description provided.

No description provided.

No description provided.

More…

K--p and K--n Cross Sections in the Momentum Range 1-4 Bev/c

Cook, V. ; Cork, Bruce ; Hoang, T.F. ; et al.
Phys.Rev. 123 (1961) 320-332, 1961.
Inspire Record 46822 DOI 10.17182/hepdata.26808

The energy dependence of the K−-nucleon total cross sections has been measured over the K− momentum range 0.98-3.98 Bev/c. K−−n cross sections were obtained by deuterium-hydrogen subtraction, with a correction for screening effects. There is evidence for structure in the T=0 K−-nucleon state in the momentum range 0.98-2.0 Bev/c. This structure is absent in the T=1 state. In addition, a measurement was made at 1.95 Bev/c of the angular distribution of the K−−p elastic scattering at small angles. The forward-scattering amplitude obtained from the data gives a ratio of real part to imaginary part 0.5±0.2 at 00. The corresponding ratio for π− mesons at this momentum was found to be 0.4−0.4+0.2. Measurements of the K−−p "elastic" charge exchange gives a cross section which falls from about 10 mb at 1 Bev/c to at most a few mb at 4 Bev/c.

1 data table

No description provided.


Photoproduction of $\pi^0$ in the Backward Direction

Buschhorn, G. ; Heide, P. ; Kotz, U. ; et al.
Phys.Rev.Lett. 20 (1968) 230-232, 1968.
Inspire Record 54459 DOI 10.17182/hepdata.21735

None

1 data table

No description provided.


Total Cross-sections for Muon-neutrino $N$ and Muon-neutrino $P$ Charged Current Interactions in the 7-ft Bubble Chamber

Baker, N.J. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.D 25 (1982) 617-623, 1982.
Inspire Record 177607 DOI 10.17182/hepdata.23972

The total cross sections for νμn and νμp charged-current interactions and their ratio R=σT(νn)σT(νp) have been measured as a function of neutrino energy from 0.4 to 10 GeV. The experiment is performed using the BNL 7-foot deuterium bubble chamber exposed to the Alternating Gradient Synchrotron wide-band neutrino beam. The absolute values of the cross sections are normalized to the quasielastic scattering (νμn→μ−p) cross section. Above 1.6 GeV the data are consistent with the quark-parton model. We find that σT(νn)Eν=(1.07±0.05)×10−38, σT(νp)Eν=(0.54±0.04)×10−38, and σT(νN)Eν=(0.80±0.03)×10−38 cm2/GeV for 〈Eν〉=3.2 GeV, and R=1.95±0.10 for 〈Eν〉=3.7 GeV.

5 data tables

Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERROR NOT GIVENNEUTRAL CURRENT AND NEUTRAL PARTICLES INDUCED REACTIONS, RESCATTERING IN DEUTERIUM).

No description provided.

No description provided.

More…

Near-threshold photoproduction of $\Lambda(1520)$ from protons and deuterons

Muramatsu, N. ; Chen, J.Y. ; Chang, W.C. ; et al.
Phys.Rev.Lett. 103 (2009) 012001, 2009.
Inspire Record 817890 DOI 10.17182/hepdata.22937

Photoproduction of $\Lambda$(1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8/LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward K$^{+/0}$ angles. This suggests the importance of the contact term, which coexists with t-channel K exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K$^+$ angles.

4 data tables

The measured differential cross sections from the liquid hydrogen target, protons, as a function the K+ polar angle.

The measured differential cross sections from the liquid hydrogen target, protons, as a function the photon energy at forward K+ polar angles of 19-43 degrees .

The measured of differential cross section at backward K+/K0 polar angles of 120-150 degrees as a function of photon energy from the liquid hydrogen target, protons, and liquid deuterium target, deuterons.

More…