Production of High Mass Muon Pairs in $\pi^-$ Be Collisions at 150-{GeV}/$c$ and 175-{GeV}/$c$

Barate, R. ; Bareyre, P. ; Bonamy, P. ; et al.
Phys.Rev.Lett. 43 (1979) 1541, 1979.
Inspire Record 142156 DOI 10.17182/hepdata.20768

This paper presents production and decay characteristics of 500 high-mass, high-resolution μ+μ− pairs produced in π− Be collisions at 150 and 175 GeV/c. The data do not agree with a simple Drell-Yan production mechanism, but indicate that higher-order quantum-chromodynamic corrections must be included.

2 data tables

No description provided.

No description provided.


Inclusive Production of $\rho^0$ and $\phi$ in $K^+ p$ Interactions at 32-{GeV}/c

The Soviet-CERN collaboration Vorobjev, A.P. ; Gerdyukov, L.N. ; Knyazev, V.V. ; et al.
Nucl.Phys.B 176 (1980) 303, 1980.
Inspire Record 153559 DOI 10.17182/hepdata.48999

Inclusive ϱ 0 and φ production is investigated in K + p interactions at 32 GeV/ c . Total and semi-inclusive ϱ 0 and φ cross sections, longitudinal and transverse momentum distributions, including 〈 P T versus x dependence are presented. No evidence for a sea-gull effect is observed. Comparison with quark models strongly suggests the possibility that a large fraction of the ϱ 0 and vector mesons are produced as fragmentation products of the incident particles. Study of uncorrelated π + π − pairs in the ϱ 0 mass range provides possible indirect evidence for the existence of diquarks in the proton.

39 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive Production of $\Delta^{++}$(1232) and $\Sigma^\pm$(1385) in $K^+ p$ Interactions at 32-{GeV}/$c$

The Soviet-CERN collaboration Azhinenko, I.V. ; Barth, M. ; Belokopytov, Yu.A. ; et al.
IFVE-80-129, 1980.
Inspire Record 156508 DOI 10.17182/hepdata.41431

None

9 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive Production of Pions and $\rho^0$ in $\pi^+ p$ Interactions at 32-{GeV}/$c$

Azhinenko, I.V. ; Belokopytov, Yu.A. ; Chliapnikov, P.V. ; et al.
Sov.J.Nucl.Phys. 31 (1980) 628, 1980.
Inspire Record 143792 DOI 10.17182/hepdata.2720

None

48 data tables

No description provided.

No description provided.

No description provided.

More…

A STUDY OF DELTA++ AND DELTA0 ISOBAR INCLUSIVE PRODUCTION IN K- p INTERACTIONS AT 32-GeV/c

Babintsev, V.V. ; Bogolyubsky, M.Yu. ; Bumazhnov, V.A. ; et al.
Sov.J.Nucl.Phys. 39 (1984) 414, 1984.
Inspire Record 190556 DOI 10.17182/hepdata.41019
22 data tables

No description provided.

No description provided.

EVENTS WITH IDENTIFIED PROTONS.

More…

Study of electron pair production below the Z mass at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ambrosini, G. ; Ansari, R. ; et al.
Phys.Lett.B 275 (1992) 202-208, 1992.
Inspire Record 322265 DOI 10.17182/hepdata.27115

Results on the cross section for the production of electron pairs in p p collisions at √ s = 630 GeV are presented. The measured value is σ = 405 ± 51 (syst.) ± 84 (syst.) pb, in the invariant mass interval 10 < m < 70 GeV. The results are compared to recent theoretical calculations which include O( α s 2 ) QCD contributions. The comparison of these data with those of lower energy experiments show approximate scaling as a function of the variable √τ = m √s .

3 data tables

No description provided.

Statistical and systematic errors combined.

Statistical errors only.


Study of the Production of Meson Resonances in Pion - Carbon Interactions at $P=40$-{GeV}/$c$

Angelov, N.S. ; Balea, O. ; Boldea, V. ; et al.
Sov.J.Nucl.Phys. 33 (1981) 832, 1981.
Inspire Record 156120 DOI 10.17182/hepdata.160

None

19 data tables

Data from the Published Version (YF 33,1546).

SIG FOR OMEGA(783) AND F0(700) ARE GIVEN WITH TAKING INTO ACCOUNT ALL DECAY MODES. Data from the Published Version (YF 33,1546).

Data from the Published Version (YF 33,1546).

More…

Measurement of the Cross Section for Prompt Isolated Diphoton Production in p\bar p Collisions at \sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Alvarez Gonzalez, B. ; Amerio, S. ; et al.
Phys.Rev.D 84 (2011) 052006, 2011.
Inspire Record 915978 DOI 10.17182/hepdata.60557

This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at \sqrt{s} = 1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36/fb. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading order parton shower Monte Carlo, (2) a fixed next-to-leading order calculation and (3) a next-to-leading order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.

6 data tables

Diphoton production cross section as a function of the diphoton invariant mass.

Diphoton production cross section as a function of the diphoton transverse momentum.

Diphoton production cross section as a function of the azimuthal angle difference in the two photons.

More…

Studies of W boson plus jets production in p\bar{p} collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 092001, 2013.
Inspire Record 1221252 DOI 10.17182/hepdata.61813

We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.

42 data tables

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of leading jet rapidity for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of second jet rapidity for events with two or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of third jet rapidity for events with three or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.

More…

Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 12 (2013) 030, 2013.
Inspire Record 1262319 DOI 10.17182/hepdata.62207

Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5(4.8) inverse femtobarns in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at $\sqrt{s}$ = 7 TeV. The measured inclusive cross section in the Z-peak region (60-120 GeV) is $\sigma(\ell \ell)$ = 986.4 +/- 0.6 (stat.) +/- 5.9 (exp. syst.) +/- 21.7 (th. syst.) +/- 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections $d\sigma/dm$ for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section $d^2\sigma/dm d |y|$ in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.

10 data tables

Normalization factors for the cross section measurements from the Z-peak region (60 < M < 120 GeV) with associated uncertainties. The measurements are given in the muon, electron and combined channels. The three systematic uncertainties correspond to experimental, theoretical and luminosity.

The DY cross section measurements for the muon channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

The DY cross section measurements for the electron channel normalized to the Z-peak region, pre- and post-FSR, as measured in the full acceptance and for the CMS detector acceptance. The uncertainty indicates the experimental (statistical and systematic) uncertainties summed in quadrature with the theoretical uncertainty resulting from the model-dependent kinematic distributions inside each bin.

More…