Eta Photoproduction in the Region from Threshold to 940 MeV

Prepost, R. ; Lundquist, D. ; Quinn, D. ;
Phys.Rev.Lett. 18 (1967) 82-86, 1967.
Inspire Record 52317 DOI 10.17182/hepdata.21768

None

2 data tables

Axis error includes +- 0.0/0.0 contribution (?////).

Axis error includes +- 0.0/0.0 contribution (?////).


Pi-+ photoproduction in forward direction

Ito, A. ; Loe, R. ; Loh, E.C. ; et al.
Phys.Rev.Lett. 24 (1970) 687-690, 1970.
Inspire Record 62934 DOI 10.17182/hepdata.21670

The ratio of π− to π+ off deuterium was measured as a function of incident photon energy from 600 to 1700 MeV in the forward direction. The ratio shows a broad dip around a center-of-mass energy of 1700 MeV, resulting presumably from the collective effect of several isospin-½ resonances in this energy region. Such a change in the ratio is reflected in the rapid variation of the isoscalar photoproduction amplitude since we found the isovector photoproduction amplitude to be a relatively smooth function decreasing slowly with increasing incident photon energy.

1 data table

No description provided.


Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

27 data tables

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

Axis error includes +- 2./2. contribution (RANDOM ERROR).

More…

Polarization of the Recoil Proton from the Neutral Photoproduction at 800 and 910 Mev

Mencuccini, C. ; Querzoli, R. ; Salvini, G. ;
Phys.Rev. 126 (1962) 1181-1182, 1962.
Inspire Record 944983 DOI 10.17182/hepdata.26790

The measurements on the polarization of the recoil protons from the process γ+p→π0+p have been extended to higher γ-ray energies, at 90° in the center-of-mass system. We have found at 910 Mev a polarization, P=−0.45±0.07; at 800 Mev, P=−0.42±0.10. The rather high values of P agree with the hypothesis that the neutral photoproduction in the 500-1000 Mev range can be described by the well-known three resonant states, and strongly indicate that the second and third resonance have opposite parity. The probable quantum numbers are: T=12, J=32, D pion wave for the second resonance; T=12, J=52, F wave for the third resonance.

1 data table

No description provided.


Photoproduction of Single Neutral Pions from Hydrogen at Energies 0.6 to 1.2 BeV

Diebold, R. ;
Phys.Rev. 130 (1963) 2089-2097, 1963.
Inspire Record 944976 DOI 10.17182/hepdata.26774

Measurements of the differential cross section for the process γ+p→π0+p have been made at three pion center-of-mass angles: 60°, 90°, and 120°. Values were obtained at intervals of 0.05 BeV (incident laboratory photon energy, k) from approximately 0.6 to 1.2 BeV. Most of the data were obtained by detecting only the recoil protons with a large, wedge-shaped, single-focusing magnetic spectrometer and associated equipment. For θ′π0=60° and k≤0.94 BeV the π0 decays were also required, the decay photons being detected by a lead glass total absorption counter. Although the experimental resolution was considerably narrower than that of most of the previous experiments, its averaging effect was still appreciable in certain regions. Using a six-parameter fit, the data at each angle were unfolded in an effort to eliminate the effects of resolution and to obtain the true cross sections as a function of energy. The results compare reasonably well with those of previous experiments once differences in resolutions and systematic errors are taken into account. The results did not agree with the predictions of a simple resonance model with the resonance quantum numbers suggested by Peierls. The positions and widths of the two cross-section peaks in this energy region are quite similar to those observed in π−p scattering.

1 data table

No description provided.


Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

24 data tables

No description provided.

No description provided.

No description provided.

More…

Differential Cross-Sections of the Neutral Pion Photoproduction from Hydrogen in the Energy Range Between 400-MeV and 950-MeV

Yoshioka, M. ; Noda, A. ; Daigo, M. ; et al.
INS-281, 1977.
Inspire Record 118722 DOI 10.17182/hepdata.40545

None

28 data tables

No description provided.

No description provided.

No description provided.

More…

The Polarized Target Asymmetry for Neutral Pion Photoproduction from Protons in the Photon Energy Range 0.7-GeV-1.45-GeV

Booth, P.S.L. ; Carroll, L.J. ; Court, G.R. ; et al.
Nucl.Phys.B 121 (1977) 45-57, 1977.
Inspire Record 111591 DOI 10.17182/hepdata.35454

Measurements have been made of the target asymmetry parameter for photoproduction of π 0 mesons from protons, using a butanol polarised target with a 3 He cryostat. Results were obtained at 14 incident photon energies between 0.7 GeV and 1.45 GeV over an angular range ∼40° to 145° c.m. The recent analysis of Barbour and Crawford provides a very good fit to the data.

14 data tables

No description provided.

No description provided.

No description provided.

More…

Polarized Target Asymmetry in pi0 Photoproduction Between 0.4-GeV and 1.0-GeV Around 100-Degrees

Feller, P. ; Fukushima, M. ; Horikawa, N. ; et al.
Phys.Lett.B 55 (1975) 241-244, 1975.
Inspire Record 90929 DOI 10.17182/hepdata.35716

The polarized target asymmetry in the reaction γp→π°p has been measured at c.m. angles around 100° for photon energies between 0.4 and 1.0 GeV by detecting both the recoil proton and the π°. The result is compared with recent analyses.

1 data table

No description provided.


Polarized Target Asymmetry in $\pi^+$ Photoproduction Between 0.3-GeV and 1.0-GeV at 130°

Feller, P. ; Fukushima, M. ; Horikawa, N. ; et al.
Nucl.Phys.B 102 (1976) 207, 1976.
Inspire Record 90055 DOI 10.17182/hepdata.36079

The polarized target asymmetry for γ + p → π + + n was measured at c.m. angles around 130° for the energy range between 0.3 and 1.0 GeV. A magnetic spectrometer system was used to detect π + mesons from the polarized butanol target. The data show two prominent positive peaks at 0.4 and 0.8 GeV and a deep minimum at 0.6 GeV. These features are well reproduced by the phenomenological analysis made by us.

1 data table

No description provided.