pi+ Photoproduction from Hydrogen at Lab Angles from 34-degrees to 155-degrees and Lab Photon Energies from 500 to 1350 MeV

Thiessen, Henry A. ;
Phys.Rev. 155 (1967) 1488-1496, 1967.
Inspire Record 52277 DOI 10.17182/hepdata.26588

The differential cross section for the reaction γ+p→π++n was measured using the Caltech 1.5-GeV electron synchrotron. The positive pions were detected and momentum analyzed in a multichannel magnetic spectrometer and the data were recorded in the memory of a pulse-height analyzer. The energy resolution was improved over previous experiments and an attempt was made to minimize systematic errors. The data are presented in the form of energy distributions at 12 lab angles from 34° to 155°, and the range of lab proton energies extended from 500 to 1350 MeV. Data were not taken at all energies for each angle, since the maximum useful momentum of the spectrometer, 600 MeVc, restricted the maximum energy for lab angles less than or equal to 74°.

5 data tables

No description provided.

No description provided.

No description provided.

More…

WEAK NEUTRAL CURRENT STUDIES BY JADE AT PETRA

Ball, A.H. ;
227-229, 1984.
Inspire Record 201958 DOI 10.17182/hepdata.76251

None

3 data tables

No description provided.

No description provided.

No description provided.


W**2 and Q**2 dependence of charged hadron and pion multiplicities in neutrino p and anti-neutrino p charged current interactions

The WA21 collaboration Jones, G.T. ; Jones, R.W.L. ; Morrison, Douglas R.O. ; et al.
Z.Phys.C 46 (1990) 25-34, 1990.
Inspire Record 305244 DOI 10.17182/hepdata.1699

Using data onvp and\(\bar vp\) charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions ofW2 andQ2. The analysis is based on ∼20000 events with incidentv and ∼10000 events with incident\(\bar v\). In addition to the known dependence of the average multiplicity onW2 a weak dependence onQ2 for fixed intervals ofW is observed. ForW>2 GeV andQ2>0.1 GeV2 the average multiplicity of charged hadrons is well described by〈n〉=a1+a2ln(W2/GeV2)+a3ln(Q2/GeV2) witha1=0.465±0.053,a2=1.211±0.021,a3=0.103±0.014 for thevp anda1=−0.372±0.073,a2=1.245±0.028,a3=0.093±0.015 for the\(\bar vp\) reaction.

72 data tables

No description provided.

No description provided.

No description provided.

More…

Total hadronic photoabsorption cross-section on nuclei in the nucleon resonance region

Bianchi, N. ; Muccifora, V. ; De Sanctis, E. ; et al.
Phys.Rev.C 54 (1996) 1688-1699, 1996.
Inspire Record 405665 DOI 10.17182/hepdata.37952

The total photoabsorption cross section for Li7, C, Al, Cu, Sn, Pb has been measured in the energy range 300–1200 MeV at Frascati with the jet-target tagged photon beam. A 4π NaI crystal detector and a lead-glass shower counter were used, respectively, to measure hadronic events and to reject the electromagnetic background. Data above 600 MeV clearly indicate a broadening of higher nucleon resonance peaks in nuclei and a reduction of the absolute value of the cross section per nucleon with respect to the free-nucleon case. This large broadening suggests a strong influence of the nuclear medium in the resonance propagation and interaction, while the systematic reduction of the measured cross sections might be due to a depletion of the resonance excitation strength and to the onset of the shadowing effect around 1 GeV. Moreover, our systematic study indicates that also the Δ-resonance excitation parameters are not the same for all nuclei, being its mass and width increasing with the nuclear density. © 1996 The American Physical Society.

1 data table

The average (GAMMA NUCLEON --> X) is computed each nucleus cross section datum with its statistical error.


Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265-GeV to 4.215-GeV

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Phys.Rev.D 5 (1972) 1640-1652, 1972.
Inspire Record 67298 DOI 10.17182/hepdata.22462

The total cross section of γ rays in hydrogen resulting in hadron production, σT, has been measured over the energy range 265-4215 MeV. A tagging system with narrow energy bins was employed. Structure in the resonance region followed by a steady fall with energy has been observed and the results are analyzed. The forward amplitude of γ-proton scattering is evaluated, and its behavior in the Argand diagram studied as a function of energy. The relationships of the measurements to Regge-pole theory and the vector-dominance model are detailed.

2 data tables

No description provided.

SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA, AND USED IN THE DISPERSION RELATION TO CALCULATE RE(AMP). AT THRESHOLD THE THOMSON AMPLITUDE IS -3.0 MUB*GEV.


Total Cross-sections for Muon-neutrino $N$ and Muon-neutrino $P$ Charged Current Interactions in the 7-ft Bubble Chamber

Baker, N.J. ; Connolly, P.L. ; Kahn, S.A. ; et al.
Phys.Rev.D 25 (1982) 617-623, 1982.
Inspire Record 177607 DOI 10.17182/hepdata.23972

The total cross sections for νμn and νμp charged-current interactions and their ratio R=σT(νn)σT(νp) have been measured as a function of neutrino energy from 0.4 to 10 GeV. The experiment is performed using the BNL 7-foot deuterium bubble chamber exposed to the Alternating Gradient Synchrotron wide-band neutrino beam. The absolute values of the cross sections are normalized to the quasielastic scattering (νμn→μ−p) cross section. Above 1.6 GeV the data are consistent with the quark-parton model. We find that σT(νn)Eν=(1.07±0.05)×10−38, σT(νp)Eν=(0.54±0.04)×10−38, and σT(νN)Eν=(0.80±0.03)×10−38 cm2/GeV for 〈Eν〉=3.2 GeV, and R=1.95±0.10 for 〈Eν〉=3.7 GeV.

5 data tables

Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERROR NOT GIVENNEUTRAL CURRENT AND NEUTRAL PARTICLES INDUCED REACTIONS, RESCATTERING IN DEUTERIUM).

No description provided.

No description provided.

More…

Total Cross-section for Hadron Production by Electron - Positron Annihilation at Adone

Ambrosio, M. ; Paternoster, G. ; Tortora, L. ; et al.
Phys.Lett.B 91 (1980) 155-160, 1980.
Inspire Record 152630 DOI 10.17182/hepdata.27239

The total cross section for electron-positron annihilation into three or more hadrons has been measured for centre of mass energies between 1.4 and 2.0 GeV. The data were obtained at ADONE by the BB̄ experiment.

1 data table

NOTE THAT THIS MEASUREMENT OF R EXCLUDES TWO-BODY FINAL STATE EVENTS. RADIATIVE CORRECTIONS WERE APPLIED.


Total Cross-Section of the Reaction K- p --> anti-K0 n from 515-MeV/c to 1065-MeV/c

Alston-Garnjost, M. ; Kenney, R.W. ; Pollard, D.L. ; et al.
Phys.Rev.D 17 (1978) 2216, 1978.
Inspire Record 121139 DOI 10.17182/hepdata.24429

We report the results of a precise measurement of the K−p→K¯0n cross section between 515 and 1065 MeV/c in steps of 10 MeV/c. The statistical errors are less than 1%, a major improvement in accuracy over previous work. We discuss in detail the experimental apparatus and the corrections made to the data. No evidence is found for the new I=1 K¯N resonances at 546 and 602 MeV/c K− momenta reported recently by Carroll et al.

1 data table

No description provided.


Total Cross-Section for Hadronic Production by e+ e- Annihilation in the Total Center-Of-Mass Energy Range 1.42-GeV - 3.09-GeV

Bacci, C. ; Baldini Celio, R. ; Battistoni, G. ; et al.
Phys.Lett.B 86 (1979) 234-238, 1979.
Inspire Record 141722 DOI 10.17182/hepdata.27311

We report experimental results on the cross section for the reaction e + e − → hadrons as a function of the total c.m. energy in the range W = 1.42–3.09 GeV. The results, combined with those already existing below the charm threshold, clearly indicate a structure for R ( W ) = α ( e + e − → hadrons)/ α ( e + e − → μ + μ − ) in that energy region.

2 data tables

THE ENERGY RANGES OF THE NEW DATA AND THE PREVIOUS (REVISED) DATA OVERLAP BETWEEN 1.9 AND 2.0 GEV. RADIATIVE CORRECTIONS HAVE BEEN APPLIED TO ALL DATA. THIS CROSS SECTION EXCLUDES TWO-BODY FINAL STATES.

AVERAGE CHARGED AND NEUTRAL MULTIPLICITY. QUOTED ERRORS ARE STATISTICAL ONLY.


The transverse asymmetry A(T') from quasielastic polarized He-3(pol.)(e(pol.),e') process and the neutron magnetic form factor.

Xu, W. ; Dutta, D. ; Xiong, F. ; et al.
Phys.Rev.Lett. 85 (2000) 2900-2904, 2000.
Inspire Record 531416 DOI 10.17182/hepdata.31474

We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.

1 data table

Ratio of neutron magnetic form-factor to dipole value.