Study of D*+- (2010) production in e p collisions at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 349 (1995) 225-237, 1995.
Inspire Record 392566 DOI 10.17182/hepdata.45000

We report the first observation of charmed mesons with the ZEUS detector at HERA using the decay channel ${\rm D}~{*+}\rightarrow (\Do \rightarrow {\rm K}~-\pi~+)\pi~+$ (+ c.c.). Clear signals in the mass difference $\Delta M$=$M$(D$~*$)--$M$(D$~0)$ as well as in the $M(K\pi)$ distribution at the D$~0$ mass are found. The $ep$ cross section for inclusive \DSpm\ production with $Q~2<4\GeV~2$ in the $\gamma p$ centre-of-mass energy range $115 < W < 275$ \GeV\ has been determined to be $(32 \pm 7~{+4}_{-7} )$ nb in the kinematic region \mbox{\{$p_T(\DS)\geq $ 1.7 \,\GeV, $|\eta(\DS)| < 1.5 $\}}. Ex\-tra\-po\-la\-ting outside this region, assuming a mass of the charm quark of 1.5 \GeV, we estimate the $ep$ charm cross section to be $\sigma(e p \rightarrow c \bar{c}X ) = (0.45 \pm 0.11~{+0.37}_{-0.22}) \, \mu {\rm b} $ at \mbox{$\sqrt{s} = 296$}\GeV\ and $\langle W \rangle = 198$ \GeV. The average $\gamma p$ charm cross section \mbox{$\sigma(\gamma p \rightarrow c \bar{c}X )$} is found to be \mbox{$(6.3 \pm 2.2~{+6.3}_{-3.0}) \, \mu {\rm b} $} at $\langle W \rangle = 163$ \GeV\ and \mbox{$(16.9 \pm 5.2~{+13.9}_{-8.5}) \, \mu {\rm b} $} at $\langle W \rangle = 243$ \GeV. The increase of the total charm photoproduction cross section by one order of magnitude with respect to low energy data experiments is well described by QCD NLO calculations using singular gluon distributions in the proton.

3 data tables

No description provided.

Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.

Assumes probability of charmed quark pair fragmenting to D* is (55.2 +- 4.2) pct and mass of CQ is 1.5 GeV.


Measurement of the diffractive cross-section in deep inelastic scattering

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 70 (1996) 391-412, 1996.
Inspire Record 415942 DOI 10.17182/hepdata.44849

Diffractive scattering of $\gamma~* p \to X + N$, where $N$ is either a proton or a nucleonic system with $M_N<4$GeV has been measured in deep inelastic scattering (DIS) at HERA. The cross section was determined by a novel method as a function of the $\gamma~* p$ c.m. energy $W$ between 60 and 245GeV and of the mass $M_X$ of the system $X$ up to 15GeV at average $Q~2$ values of 14 and 31GeV$~2$. The diffractive cross section $d\sigma~{diff} /dM_X$ is, within errors, found to rise linearly with $W$. Parameterizing the $W$ dependence by the form $d\sigma~{diff}/dM_X \propto (W~2)~{(2\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} -2)}$ the DIS data yield for the pomeron trajectory $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}} = 1.23 \pm 0.02(stat) \pm 0.04 (syst)$ averaged over $t$ in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ extracted from soft interactions. The value of $\overline{\mbox{$\alpha_{_{I\hspace{-0.2em}P}}$}}$ measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates from processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton $F~{D(3)}_2(\beta,Q~2, \mbox{$x_{_{I\hspace{-0.2em}P}}$})$ has been determined, where $\beta$ is the momentum fraction of the struck quark in the pomeron. The form $F~{D(3)}_2 = constant \cdot (1/ \mbox{$x_{_{I\hspace{-0.2em}P}}$})~a$ gives a good fit to the data in all $\beta$ and $Q~2$ intervals with $a = 1.46 \pm 0.04 (stat) \pm

3 data tables

No description provided.

No description provided.

No description provided.


Charged particles and neutral kaons in photoproduced jets at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 2 (1998) 77-93, 1998.
Inspire Record 451528 DOI 10.17182/hepdata.44362

Charged particles ($h^\pm$) and \kz mesons have been studied in photoproduced events containing at least one jet of $E_T > 8$ GeV in a pseudorapidity interval (--0.5, 0.5) in the ZEUS laboratory frame. Distributions are presented in terms of transverse momentum, pseudorapidity and distance of the particle from the axis of a jet. The properties of \hpm within the jet are described well using the standard settings of PYTHIA, but the use of the multiparton interaction option improves the description outside the jets. A reasonable overall description of the \kz behaviour is possible with PYTHIA using a reduced value of the strangeness suppression parameter. The numbers of $h^\pm$ and \kz within a jet as defined above are measured to be $3.25\pm0.02\pm0.28$ and $0.431\pm0.013\pm0.088$ respectively. Fragmentation functions are presented for $h^\pm$ and \kz in photoproduced jets; agreement is found with calculations of Binnewies et al. and, at higher momenta, with $p\bar p$ scattering and with standard PYTHIA. Fragmentation functions in direct photoproduced events are extracted, and at higher momenta give good agreement with data from related processes in $e^+e^-$ annihilation and deep inelastic $ep$ scattering.

11 data tables

Corrected multiplicities of charged particles and neutral K0 mesons per photoproduced jet.

Corrected distribution of charged particles per jet in events containing a hadron jet.

Corrected distribution of charged particles per jet in events containing a hadron jet.

More…

Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 421 (1998) 368-384, 1998.
Inspire Record 450130 DOI 10.17182/hepdata.44419

A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range $5 \leq Q^2 \leq 185\gev^2$ and $160 \leq W \leq 250\gev$, where $Q^2$ is the virtuality of the photon and $W$ is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the $\gamma^*-$pomeron rest frame, on the mass of the hadronic final state, $M_X$. With increasing $M_X$ the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.

21 data tables

Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.

Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.

Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.

More…

High E(T) inclusive jet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 4 (1998) 591-606, 1998.
Inspire Record 467101 DOI 10.17182/hepdata.44376

Inclusive jet differential cross sections for the reaction e+ p --> e+ + jet + X with quasi-real photons have been measured with the ZEUS detector at HERA. These cross sections are given for the photon-proton centre-of-mass energy interval 134 < W < 277 GeV and jet pseudorapidity in the range -1 < eta(jet) < 2 in the laboratory frame. The results are presented for three cone radii in the eta-phi plane, R=1.0, 0.7 and 0.5. Measurements of dsigma/deta(jet) above various jet-transverse-energy thresholds up to 25 GeV and in three ranges of W are presented and compared to next-to-leading order (NLO) QCD calculations. For jets defined with R=1.0 differences between data and NLO calculations are seen at high eta(jet) and low E_T(jet). The measured cross sections for jets defined with R=0.7 are well described by the calculations in the entire measured range of eta(jet) and E_T(jet). The inclusive jet cross section for E_T(jet) > 21 GeV is consistent with an approximately linear variation with the cone radius R in the range between 0.5 and 1.0, and with NLO calculations.

15 data tables

Jet defining cone radius R = 1.0.

Jet defining cone radius R = 1.0.

Jet defining cone radius R = 1.0.

More…

Differential (2+1) jet event rates and determination of alpha(s) in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Eur.Phys.J.C 5 (1998) 625-639, 1998.
Inspire Record 472304 DOI 10.17182/hepdata.44249

Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.

4 data tables

Y2 distribution corrected for detector effects.

Y2 distribution corrected for both detector and hadronization effects.

Y2 distribution using the E, E0 and P variants of the JADE alogrithm, corrected for both detector and hadronization effects. Statistical errors only.

More…

Inclusive charm production in two-photon collisions at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 453 (1999) 83-93, 1999.
Inspire Record 481163 DOI 10.17182/hepdata.49252

The cross section of charm production in γγ collisions σ(e + e − →e + e − c c ̄ X) is measured at LEP with the L3 detector at centre-of-mass energies from 91 GeV to 183 GeV. Charmed hadrons are identified by electrons and muons from semileptonic decays. The direct process γγ→c c ̄ is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon.

1 data table

Total cross section for inclusive charm production.


Inclusive production of D*+- mesons in photon photon collisions at s**(1/2)(ee) = 183-GeV and 189-GeV and a first measurement of F2(c)(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 579-596, 2000.
Inspire Record 510531 DOI 10.17182/hepdata.35045

The inclusive production of D*+- mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e+e- centre-of-mass energies of 183 and 189GeV. The D* mesons are reconstructed in their decay to D0pi+ with the D0 observed in the two decay modes Kpi+ and Kpi+pi-pi+. After background subtraction, 100.4+-12.6(stat) D*+- mesons have been selected in events without observed scattered beam electron ("anti-tagged") and 29.8+-5.9 (stat) D*+- mesons in events where one beam electron is scattered into the detector ("single-tagged"). Direct and single-resolved events are studied separately. Differential cross-sections as functions of the D* transverse momentum p_t and pseudorapidity \eta are presented in the kinematic region 2<p_t<12GeV and \eta<1.5. They are compared to next-to-leading order (NLO) perturbative QCD calculations. The total cross-section for the process (e+e- to e+e-ccbar), where the charm quarks are produced in the collision of two quasi-real photons, is measured to be 842+-97(stat)+-75(syst)+-196(extrapolation)pb. A first measurement of the charm structure function F2 of the photon is performed in the kinematic range 0.0014<x<0.87 and 5<Q^2<100 GeV^2, and the result is compared to a NLO perturbative QCD calculation.

7 data tables

Differential PT distribution for anti-tagged events for both D* decay modesand combined.

Differential ETARAP distribution for anti-tagged events for both D* decay modes and combined.

Integrated cross section using the anti-tagged events for D* production in the kinematic range of the experiment.

More…

Inclusive D*+- production in two photon collisions at LEP

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 535 (2002) 59-69, 2002.
Inspire Record 585623 DOI 10.17182/hepdata.54885

Inclusive D^{*+-} production in two-photon collisions is studied with the L3 detector at LEP, using 683 pb^{-1} of data collected at centre-of-mass energies from 183 to 208 GeV. Differential cross sections are determined as functions of the transverse momentum and pseudorapidity of the D^{*+-} mesons in the kinematic region 1 GeV &lt; P_T &lt; 12 GeV and |eta| &lt; 1.4. The cross sections sigma(e^+e^- -> e^+e^-D^{*+-}X) in this kinematical region is measured and the sigma(e^+e^- -> e^+e^- cc{bar}X) cross section is derived. The measurements are compared with next-to-leading order perturbative QCD calculations.

4 data tables

Visible D*+- production cross section in the given phase space range. Data are given for each D* decay channel, and the average.

Total cross section for open charm production. Data are given for each D* decay channel, and the combined average. The second systematic (DSYS) error is the uncertainty on the extrapolation from the visible to the full phase space region.

The measured D*+- production cross section in the region ABS(ETARAP) < 1.4.The DSIG/DPT points refer to the centre of the bin and the SIG points are the integrated over the bin.

More…

Measurement of the charm structure function F2(c)(gamma) of the photon at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 539 (2002) 13-24, 2002.
Inspire Record 587909 DOI 10.17182/hepdata.49793

The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b

3 data tables

The inclusive D* production cross section.

The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.

The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.