Total p-p and 'p-n' Cross Sections at Cosmotron Energies

Chen, Francis F. ; Leavitt, Christopher P. ; Shapiro, Anatole M. ;
Phys.Rev. 103 (1956) 211-225, 1956.
Inspire Record 46809 DOI 10.17182/hepdata.828

The total proton-proton cross section (excluding Coulomb scattering) has been measured at energies from 410 Mev up to 2.6 Bev, using external beams from the Cosmotron. Fast counting equipment was used to measure the attenuation of the beams through polyethylene, carbon, and liquid H2 absorbers. At each energy E, σp−p(E, Ω) was measured as a function of the solid angle Ω subtended by the rear counter at the center of the absorber. The total cross section σp−p was obtained by a least squares straight line extrapolation to Ω=0. The measured σp−p as a function of energy rises sharply from 26.5 mb at 410 Mev to 47.8 mb at 830 Mev and then remains approximately constant out to 1.4 Bev, above which energy it decreases gradually to about 42 mb at 2.6 Bev. Using the same equipment and procedure, we have also measured the D2O-H2O difference cross section, called "σp−n," for protons over the same energy range. From a comparison of "σp−n," and σp−p, with the n−p and n−d measurements of Coor et al. at 1.4 Bev, it is apparent that one nucleon is "shielded" by the other in the deuteron. This effect is not present at energies below 410 Mev. Comparing the measured p−p and "p−n" (corrected) cross sections with the results of other high-energy experiments, one may infer the following conclusions: (1) The sharp rise in σp−p from 400 to 800 Mev results from increasing single pion production, which may proceed through the T=32, J=32 excited nucleon state. (2) Above 1 Bev the inelastic (meson production) p−p cross section appears to be approximately saturated at 27-29 mb. (3) The rise in cross section for n−p interaction in the T=0 state, associated with the rise in double pion production, implies that double meson production also proceeds through the T=32 nucleon state. (4) The probable equality of σp−d and σn−d at 1.4 Bev implies the validity of charge symmetry at this energy.

4 data tables

No description provided.

No description provided.

More…

Cross Sections for Antiprotons in Hydrogen, Beryllium, Carbon, and Lead

Cork, Bruce ; Lambertson, Glen R. ; Piccioni, Oreste ; et al.
Phys.Rev. 107 (1957) 248-256, 1957.
Inspire Record 944999 DOI 10.17182/hepdata.26942

A strong-focusing momentum channel has been arranged to form a beam from antiprotons produced by 6.0-Bev protons striking an internal target of the Bevatron. The channel consists of five 4-inch-diameter magnetic quadrupole lenses and two deflecting magnets adjusted to give a ±5% momentum interval. The antiprotons were selected from a large background of mesons by a scintillation counter telescope with a time-of-flight coincidence circuit having a resolution of ±2×10−9 second. This system allowed detection of approximately 400 antiprotons per hour. With a liquid hydrogen attenuator, the total antiproton-proton cross section at four different energies, 190, 300, 500, and 700 Mev, has been observed to be 135, 104, 97, and 94 mb, respectively. Also, the total cross sections for antiprotons incident on Be and C have been measured at two energies. The inelastic cross sections for carbon have been measured by observing the pulse heights produced by the interactions in a target of liquid scintillator. To measure the inelastic cross section for a high-Z element, lead wafers were immersed in the liquid scintillator, and to select inelastic events the pulse heights were measured.

4 data tables
More…

K--p and K--n Cross Sections in the Momentum Range 1-4 Bev/c

Cook, V. ; Cork, Bruce ; Hoang, T.F. ; et al.
Phys.Rev. 123 (1961) 320-332, 1961.
Inspire Record 46822 DOI 10.17182/hepdata.26808

The energy dependence of the K−-nucleon total cross sections has been measured over the K− momentum range 0.98-3.98 Bev/c. K−−n cross sections were obtained by deuterium-hydrogen subtraction, with a correction for screening effects. There is evidence for structure in the T=0 K−-nucleon state in the momentum range 0.98-2.0 Bev/c. This structure is absent in the T=1 state. In addition, a measurement was made at 1.95 Bev/c of the angular distribution of the K−−p elastic scattering at small angles. The forward-scattering amplitude obtained from the data gives a ratio of real part to imaginary part 0.5±0.2 at 00. The corresponding ratio for π− mesons at this momentum was found to be 0.4−0.4+0.2. Measurements of the K−−p "elastic" charge exchange gives a cross section which falls from about 10 mb at 1 Bev/c to at most a few mb at 4 Bev/c.

1 data table

No description provided.


Large-Angle Elastic Scattering of Negative Pions by Protons at 1.51, 2.01, and 2.53 Bev/c

Lai, Kwan Wu ;
PhD Thesis, Michigan U., 1963.
Inspire Record 1408825 DOI 10.17182/hepdata.70519

The differential elastic scattering cross sections for negative pions on ; protons were measured at incident momenta of 1.51, 2.01, and 2.53 Bev/c with ; emphasis on the angular region outside the diffraction peak. The purpose of the ; experiment was to examine the behavior of the largeangle differential elastic ; cross section as a function of energy from the energy of the highest known ; resonance in the pion-nucleon system into the region where the total. cross ; sections appear to be approaching an asymptotic value. The experiment was ; performed at the Bevatron, using a luminescent chamber system to photograph the ; tracks of the scattered pion and the recoil proton from a liquid hydrogen target. ; A total of 2412 elastic scatterings were analyzed at 1.51 Bev/c, 1300 events at ; 2.01 Bev/c, and 1080 events at 2.53 Bev/c. From the existing data it may be ; noted that the backward bump, which has a maximum height of 2.1 mb/sr at 900 Mev ; and 1.1 mb/sr at 1020 Mev, is down to 0.4 mb/sr at 1.51 Bev/c (1.37 Bev), and is ; not present at 2.01 or 2.53 Bev/c. The angular distributions behind the ; diffraction peak at 2.01 and 2.53 Bev/c are rougly constant, decreasing from 0.18 ; mb/sr at 2.01 Bev/c to 0.125 mb/sr at 2.53 Bev/c. Although the data can be taken ; to suggest some oscillatory structure in this region, they are not inconsistent ; with an isotropic distribution that might be interpreted as evidence for an S-; wave scattering behind the diffraction peak. Large-Angle Elastic Scattering of Negative Pions by Protons at 1.51, 2.01, and 2.53 Bev/c.

3 data tables

No description provided.

No description provided.

No description provided.


Elastic scattering of negative pions by protons at 2 BeV/c

Damouth, David E. ; Jones, L.W. ; Perl, M.L. ;
Tech.Rep.11, 1963.
Inspire Record 1407276 DOI 10.17182/hepdata.163

None

2 data tables

No description provided.

No description provided.


Elastic-Differential Cross Section of pi++p at 1.5, 2.0, and 2.5 BeV/c

Cook, Victor ; Cork, Bruce ; Holley, William R. ; et al.
Phys.Rev. 130 (1963) 762-765, 1963.
Inspire Record 944975 DOI 10.17182/hepdata.599

We measured elastic-scattering angular distributions for π++p scattering at 1.5, 2.0, and 2.5 BeV/c using spark chambers to detect scattered pions and protons. A bump that decreases in amplitude with increasing momentum is observed in the backward hemisphere in the 1.5- and 2.0-BeV/c distributions, but is not observed in the 2.5-BeV/c distributions. It appears reasonable to attribute this phenomenon to the 1.45-BeV/c resonance observed in the π++p total cross section. The data are compared with π−+p data and are found to support the theoretical prediction that the scattering cross sections for both charge states should become equal at high energies. We fit the angular distributions with a power series in cosθ*, and compare the extrapolated values for the scattering cross section in the backward direction with the calculation of the neutron-exchange pole contribution to the cross section. The "elementary" neutron-pole term contribution is calculated to be 90 mb/sr at 2.0 BeV/c, in violent disagreement with the extrapolated value, ≈0.5 mb/sr.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Photoproduction of pi Mesons between 0.9 and 4.0 BeV

Alvarez, R. ; Bar-Yam, Z. ; Kern, W. ; et al.
Phys.Rev.Lett. 12 (1964) 707-710, 1964.
Inspire Record 944926 DOI 10.17182/hepdata.21825

None

1 data table

No description provided.


HIGH-ENERGY pi- p ELASTIC SCATTERING FOR SMALL MOMENTUM TRANSFERS AND FORWARD DISPERSION CALCULATIONS

Saxer, Howard I. ;
UM-03106-19-T, 1964.
Inspire Record 1101967 DOI 10.17182/hepdata.37884

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of Proton Electromagnetic Form Factors at High Momentum Transfers

Chen, K.W. ; Dunning, J.R. ; Cone, A.A. ; et al.
Phys.Rev. 141 (1966) 1267-1285, 1966.
Inspire Record 50783 DOI 10.17182/hepdata.26655

Elastic electron-proton scattering cross sections have been measured using the internal beam of the 6-BeV Cambridge Electron Accelerator at laboratory scattering angles between 31° and 90° for values of the four-momentum transfer squared ranging from q2=0.389 to 6.81 (BeV/c)2 (q2=10 to 175F−2). Incident electron energies ranged from 1.0 to 6.0 BeV. Scattered electrons from an internal liquid-hydrogen target were momentum-analyzed using a single quadrupole spectrometer capable of momentum analysis up to 3.0 BeV/c. Čerenkov and shower counters were used to help reject pion and low-energy background. The cross sections presented are absolute cross sections with experimental errors ranging from 6.8% to 20%. Separation of proton electromagnetic form factors have been made for all but the two highest momentum transfer points, using the Rosenbluth formula. Both form factors, GEp and GMp, were observed to continue to decrease as the momentum transfer increases. An upper limit to the possible asymptotic values of the proton electromagnetic form factors has been established.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Nucleon-Nucleon Total Cross Sections from 1.1 to 8 GeV/c

Bugg, D.V. ; Salter, D.C. ; Stafford, G.H. ; et al.
Phys.Rev. 146 (1966) 980-992, 1966.
Inspire Record 50610 DOI 10.17182/hepdata.408

Measurements have been made of the total cross sections σ(p−p) and σ(p−d) over the laboratory momentum range 1.1 to 8 GeV/c, with relative errors of 0.1%. The absolute accuracies of these cross sections are limited to 0.3% by lack of information which will allow the Coulomb-nuclear interference to be calculated accurately. Values of the total cross sections σ(p−n) and σ(I=0) are deduced by assuming the Glauber correction. Structure is observed in σ(p−p) near a mass value of 2.75 GeV/c2; its interpretation is discussed. σ(I=0) rises rapidly in the range 2.3 to 2.9 GeV/c2, and this is attributed to the onset of strong inelastic scattering.

2 data tables

No description provided.

No description provided.