Intermittency in hadronic decays of the Z0

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 262 (1991) 351-361, 1991.
Inspire Record 314631 DOI 10.17182/hepdata.29397

A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.

3 data tables

Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.

Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.


A Determination of the Properties of the Neutral Intermediate Vector Boson Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 231 (1989) 509, 1989.
Inspire Record 282041 DOI 10.17182/hepdata.29768

We report the results of first physics runs of the L3 detector at LEP. Based on 2538 hadron events, we determined the mass m z 0 and the width Γ z 0 of the intermediate vector boson Z 0 to be m z 0 =91.132±0.057 GeV (not including the 46 MeV LEP machine energy uncertainty) and Γ z 0 =2.588±0.137 GeV. We also determined Γ invisible =0.567±0.080 GeV, corresponding to 3.42±0.48 number of neutrino flavors. We also measured the muon pair cross section and determined the branching ratio Γ μμ = Γ h =0.056±0.006. The partial width of Z 0 →e + e − is Γ ee =88±9±7 MeV.

1 data table

No description provided.


Measurements of Z Boson Resonance Parameters in e+ e- Annihilation

Abrams, G.S. ; Adolphsen, Chris ; Averill, D. ; et al.
Phys.Rev.Lett. 63 (1989) 2173, 1989.
Inspire Record 281818 DOI 10.17182/hepdata.20033

We have measured the mass of the Z boson to be 91.14±0.12 GeV/c2, and its width to be 2.42−0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9.

1 data table

No description provided.


Measurement of the Z0 Mass and Width with the OPAL Detector at LEP

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 231 (1989) 530-538, 1989.
Inspire Record 282821 DOI 10.17182/hepdata.29757

We report an experimental determination of the cross section for e + e − → hadrons from a scan around the Z 0 pole. On the basis of 4350 hadronic events collected over seven energy points between 89.26 GeV and 93.26 GeV we obtain a mass of m z =91.01±0.05±0.05 GeV, and a total decay width of Γ z =2.60±0.13 GeV. In the context of the standard model t these results imply 3.1 ± 0.4 neutrino generations.

1 data table

No description provided.


Measurement of the Mass and Width of the Z0 Particle from Multi - Hadronic Final States Produced in e+ e- Annihilations

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 231 (1989) 539-547, 1989.
Inspire Record 282905 DOI 10.17182/hepdata.29769

First measurements of the mass and width of the Z 0 performed at the newly commissioned LEP Collider by the DELPHI Collaboration are presented. The measuements are derived from the study of multihadronic final states produced in e + e − annihilations at several energies around the Z 0 mass. The values found for the mass and width are M (Z 0 )=91.06±0.09 (stat) ±0.045 (syst.) GeV and Γ (Z 0 )=2.42±0.21 (stat.) GeV respectively, froma three-parameter fit to the line shape. A two-parameter fit in the framework of the standard model yields for the number of light neutrino species N ν =2.4±0.4 (stat.) ±0.5 (syst.).

1 data table

No description provided.


Determination of the Number of Light Neutrino Species

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 231 (1989) 519-529, 1989.
Inspire Record 282904 DOI 10.17182/hepdata.29758

The cross-section for e + e − → hadrons in the vicinity of the Z boson peak has been measured with the ALEPH detector at the CERN Large Electron Positron collider, LEP. Measurements of the Z mass, M z = (91.174±0.070) GeV, the Z width Γ z =(2.68±0.15) GeV, and of the peak hadronic cross-section, σ had peak =(29.3±1.2) nb, are presented. With the constraints of the standard electroweak model, the number of light neutrino species is found to be N v =3.27±0.30. this results rules out of the possibility of a fourth type of light neutrino at 98% CL.

2 data tables

Selection from TPC tracks.

Selection by calorimeters.


Two Jet Differential Cross-Section in anti-p p Collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 64 (1990) 157, 1990.
Inspire Record 283353 DOI 10.17182/hepdata.19998

The two-jet differential cross section d3σ(p¯p→jet 1+jet 2+X)/dEtdη1dη2, averaged over -0.6≤η1≤0.6, at √s =1.8 TeV, has been measured in the Collider Detector at Fermilab. The predictions of leading-order quantum chromodynamics for most choices of structure functions show agreement with the data.

6 data tables

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

Systematic error contains all known systematic uncertainties, including the effect of uncertainties in the energy scale.

More…

Measurement of $g$(a) and $g(V$), the Neutral Current Coupling Constants to Leptons

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 236 (1990) 109-115, 1990.
Inspire Record 283470 DOI 10.17182/hepdata.29715

We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.

2 data tables

No description provided.

No description provided.


A Precise Determination of the Number of Families With Light Neutrinos and of the $Z$ Boson Partial Widths

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Lees, J.P. ; et al.
Phys.Lett.B 235 (1990) 399-411, 1990.
Inspire Record 284411 DOI 10.17182/hepdata.29743

More extensive and precise results are reported on the parameters of Z decay. On the basis of 20 000 Z decays collected with the ALEPH detector at LEP we find M z =91.182±0.026 (exp.) ±0.030 (beam) GeV, Γ z =2.541±0.056 GeV and σ had 0 =41.4±0.8 nb. The partial widths for the hadronic and leptonic channels are Γ had =1804±44 MeV, Γ e + e − =82.1±3.4 MeV, Γ μ + μ − =87.9±6.0 MeV and Γ τ + τ − =86.1±5.6 MeV, in good agreement with the standard model. On the basis of the average leptonic width Γ ℓ + ℓ − =83.9±2.2 MeV, the effective weak mixing angle is found to be sin 2 θ w ( M z )=0.231±0.008. Usin g the partial widths calculated in the standard model, the number of light neutrino families is N ν =3.01±0.15 (exp.)±0.05 (theor.).

4 data tables

Penetrating charged particle track selection.

Calorimeter selection.

Average cross section.

More…

Measurement of the Decay of the $\Z^0$ Into Lepton Pairs

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 235 (1990) 379-388, 1990.
Inspire Record 283146 DOI 10.17182/hepdata.29723

We report on a measurement of the processes e + e − →e + e − , e + e − → μ + μ − , and e + e − → τ + τ − near the Z 0 pole. On the basis of 163 e + e − , 101 μ + μ − and 87 τ + τ − events we obtain Γ ee =89±4±4 MeV, Γ μμ =85±9±6 MeV and Γ ττ =87±10±8 MeV, compatible with the standard model. Combining these with our previous results on hadronic Z 0 decays, we find a hadronic width Γ had =1787±81±90 MeV and an invisible width Γ inv =552±85±71 MeV.

2 data tables

Statistical errors only.

Statistical errors only.


Measurement of $\Z^0$ Decays to Hadrons and a Precise Determination of the Number of Neutrino Species

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 237 (1990) 136-146, 1990.
Inspire Record 286423 DOI 10.17182/hepdata.29736

We have made a precise measurement of the cross section for e + e − →Z 0 →hadrons with the L3 detector at LEP, covering the s range from 88.28 to 95.04 GeV. From a fit to the Z 0 mass, total width, and the hadronic cross section to be M Z 0 =91.160 ± 0.024 (experiment) ±0.030(LEP) GeV, Γ Z 0 =2.539±0.054 GeV, and σ h ( M Z 0 )=29.5±0.7 nb. We also used the fit to the Z 0 peak cross section and the width todetermine Γ invisible =0.548±0.029 GeV, which corresponds to 3.29±0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4σ confidence level.

2 data tables

No description provided.

Total hadronic cross section.


A MEASUREMENT OF THE Z0 LEPTONIC PARTIAL WIDTHS AND THE FORWARD - BACKWARD ASYMMETRY

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
L3-005, 1990.
Inspire Record 294576 DOI 10.17182/hepdata.29691

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Combined Analysis of the Hadronic and Leptonic Decays of the $\Z^0$

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 240 (1990) 497-512, 1990.
Inspire Record 294808 DOI 10.17182/hepdata.29720

We report on a measurement of the mass of the Z 0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of M z =91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γ z =2.536±0.045 GeV. The errors on M z have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γ ee =81.2±2.6 MeV, Γ μμ =82.6± 5.8 MeV, and Γ ττ =85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γ ℓ + ℓ − = 81.9±2.0 MeV. The hadronic partial width is Γ had =1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γ inv =453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.

4 data tables

Errors are statistical and point to point systematic luminosity error of 1 pct.

Measured values of e+ e- --> e+ e- cross section.

Corrected cross section. Corrections are for t-channel effects and loss of acollinear events near the boundary of the acceptance.

More…

A Precise Measurement of the $Z$ Resonance Parameters Through Its Hadronic Decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 241 (1990) 435-448, 1990.
Inspire Record 295501 DOI 10.17182/hepdata.29722

A measurement of the cross section for e + e - → hadrons using 11 000 hadronic decays of the Z boson at ten different center-of-mass energies is presented. A three-parameter fit gives the following values for the Z mass M z , the total width Γ z , the product of the electronic and hadronic partial widths Γ e Γ h , and the unfolded pole cross section σ 0 : M Z =91.171±0.030(stat)±0.030 (beam) GeV, Γ Z =2.511±0.065 GeV, Γ e Γ h =0.148±0.006 (stat.)±0.004 (syst.) GeV 2 , σ 0 =41.6±0.7(stat.)±1.1 (syst.) nb,

1 data table

No description provided.


Study of the Leptonic Decays of the $Z^0$ Boson

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 241 (1990) 425-434, 1990.
Inspire Record 295500 DOI 10.17182/hepdata.15431

Measurements are presented of the cross section ratios R ℓ = σ ℓ ( e + e − →ℓ + ℓ − ) σ h ( e + e − →hadrons) for ℓ=e, μ and τ using data taken from a scan around the Z 0 . The results are R e =(5.09± o .32±0.18)%, R μ =(0.46±0.35±0.17)% and R τ =(4.72±0.38±0.29)% where, for the ratio R e , the t -channel contribution has been subtracted. These results are consistent with the hypothesis of lepton universality and test this hypothesis at the energy scale s ∼8300 GeV 2 . The absolute cross sections σ ℓ (e + e − →ℓ + ℓ − ) have also been measured. From the cross sections the leptonic partial widths Γ e =(83.2±3.0±2.4) MeV, (Γ e Γ μ ) 1 2 =(84.6±3.0±2.4) MeV and (Γ e Γ τ ) 1 2 =(82.6±3.3±3.2) MeV have been extracted. Assuming lepton universality the ratio Γ ℓ Γ h =(4.89±0.20±0.12) × 10 −2 w was obtained, together with Γ ℓ =(83.6±1.8±2.2) MeV. The number of light neutrino species is determined to be N v =3.12±0.24±0.25. Al the data are consistent with the predictions of the standard model.

4 data tables

E+ E- final state is t-channel subtracted.

No t-channel subtraction. Statistical errors only.

Statistical errors only.

More…

Study of Hadronic Decays of the $\Z^0$ Boson

The DELPHI collaboration Aarnio, P. ; Abreu, P. ; Adam, W. ; et al.
Phys.Lett.B 240 (1990) 271-282, 1990.
Inspire Record 294894 DOI 10.17182/hepdata.49562

Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.

13 data tables

Corrected Sphericity distribution. Statistical errors only.

Corrected Aplanarity distribution. Statistical errors only.

Corrected Q3-Q2 distribution. Statistical errors only.

More…

A Determination of electroweak parameters from Z0 ---> mu+ mu- (gamma)

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 247 (1990) 473-480, 1990.
Inspire Record 297172 DOI 10.17182/hepdata.29622

We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.

4 data tables

No description provided.

Forward backward charge asymmetry.

No description provided.

More…

A Precision measurement of the number of neutrino species

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 249 (1990) 341-352, 1990.
Inspire Record 298079 DOI 10.17182/hepdata.29659

We have measured the cross section for e + e − →hadrons over the center of mass energy range of the Z 0 peak, from 88.22 to 95.03 GeV. We determine the Z 0 mass M z =91.164±0.013 (experiment) ±0.030 (LEP) GeV. Within the framework of the standard model we determine the invisible width, Γ invisible =0.502±0.018 GeV, and the number of light neutrino species, N ν =3.01±0.11. We exclude the existence of a supersymmetric scalar neutrino having a mass less than 31.4 GeV, at the 95% confidence level. We performed a model independent combined fit to the e + e − →hadrons and e + e − → μ + μ − data to determine total width, leptonic width and hadronic width of the Z 0 .

2 data tables

Cross sections from 1990 data. Additional systematic error 1.5 pct.

Cross sections from 1989 data. This data has been rescaled by 0.96 from original publication PL B237 (90) 136. Additional systematic error 2.0 pct.


Measurement of electroweak parameters from Z decays into Fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 48 (1990) 365-392, 1990.
Inspire Record 298414 DOI 10.17182/hepdata.47314

We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.

8 data tables

Hadronic cross section from the charged track selection trigger.

Hadronic cross section from the calorimeter selection trigger.

Averaged hadronic cross section.

More…

Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

6 data tables

Cross sections corrected for the effects of efficiency and kinematic cuts. Errors have systematic effects folded.

Acceptance corrected cross sections. Statistical errors only.

Acceptance corrected cross sections. Statistical errors only.

More…

First Measurements of Hadronic Decays of the $Z$ Boson

The MARK-II collaboration Abrams, G.S. ; Adolphsen, Chris ; Aleksan, R. ; et al.
Phys.Rev.Lett. 63 (1989) 1558, 1989.
Inspire Record 282670 DOI 10.17182/hepdata.20044

We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.

5 data tables

Corrected event shape distributions.

Corrected event shape distributions.

Corrected event shape distributions.

More…

Jet fragmentation properties of anti-p p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, D. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 65 (1990) 968-971, 1990.
Inspire Record 297585 DOI 10.17182/hepdata.19919

The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).

1 data table

No description provided.


A Determination of electroweak parameters from Z0 decays into charged leptons

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 250 (1990) 183-192, 1990.
Inspire Record 299253 DOI 10.17182/hepdata.29552

We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .

5 data tables

Cross section from 1990 data.

Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).

Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).

More…

DELPHI results on the Z0 resonance parameters through its hadronic and leptonic decay modes

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
CERN-PPE-90-119, 1990.
Inspire Record 298840 DOI 10.17182/hepdata.47313

None

7 data tables

Overall systematic error is 2.3 pct.

Overall systematic error is 2.6 pct.

Overall systematic error is 2.8 pct.

More…

Determination of Z0 resonance parameters and couplings from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Nucl.Phys.B 367 (1991) 511-574, 1991.
Inspire Record 317493 DOI 10.17182/hepdata.33016

From measurements of the cross sections for e + e − → hadrons and the cross sections and forward-backward charge-asymmetries for e e −→ e + e − , μ + μ − and π + π − at several centre-of-mass energies around the Z 0 pole with the DELPHI apparatus, using approximately 150 000 hadronic and leptonic events from 1989 and 1990, one determines the following Z 0 parameters: the mass and total width M Z = 91.177 ± 0.022 GeV, Γ Z = 2.465 ± 0.020 GeV , the hadronic and leptonic partial widths Γ h = 1.726 ± 0.019 GeV, Γ l = 83.4 ± 0.8 MeV, the invisible width Γ inv = 488 ± 17 MeV, the ratio of hadronic over leptonic partial widths R Z = 20.70 ± 0.29 and the Born level hadronic peak cross section σ 0 = 41.84±0.45 nb. A flavour-independent measurement of the leptonic cross section gives very consistent results to those presented above ( Γ l = 83.7 ± 0.8 rmMeV ). From these results the number of light neutrino species is determined to be N v = 2.94 ±0.10. The individual leptonic widths obtained are: Γ e = 82.4±_1.2 MeV, Γ u = 86.9±2.1 MeV and Γ τ = 82.7 ± 2.4 MeV. Assuming universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are: V ̄ l 2 = 0.0003±0.0010 and A ̄ l 2 = 0.2508±0.0027 . These values correspond to the electroweak parameters: ϱ eff = 1.003 ± 0.011 and sin 2 θ W eff = 0.241 ± 0.009. Within the Minimal Standard Model (MSM), the results can be expressed in terms of a single parameter: sin 2 θ W M ̄ S = 0.2338 ± 0.0027 . All these values are in good agreement with the predictions of the MSM. Fits yield 43< m top < 215 GeV at the 95% level. Finally, the measured values of Γ Z and Γ inv are used to derived lower mass bounds for possible new particles.

18 data tables

Cross section from analysis I based on energy of charged particles. Additional 1.0 pct normalisation uncertainty.

Cross section from analysis II based on calorimeter energies. Additional 1.1 pct normalisation uncertainty.

Cross sections within the polar angle range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. Overall systematic error 1.2 pct not included.

More…

A Measurement of the Z0 ---> b anti-b forward - backward asymmetry

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 252 (1990) 713-721, 1990.
Inspire Record 301901 DOI 10.17182/hepdata.29506

We have measured the forward-backward asymmetry in Z 0 → b b decays using hadronic events containing muons and electrons. The data sample corresponds to 118 200 hadronic events at √ s ≈ M z . From a fit to the single and dilepton p and P ⊥ spectra, we determine A b b =0.130 −0.042 +0.044 including the correction for B 0 − B 0 mixing.

3 data tables

Observed asymmetry from fit to single and dilepton P and PT spectra assuming no mixing.

Asymmetry corrected for the effects of mixing using the L3 observed mixing parameter chi(B) = 0.178 +0.049,-0.040.

SIN2TW determined from the asymmetry measurement.


Charged particle multiplicity distributions in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 50 (1991) 185-194, 1991.
Inspire Record 301657 DOI 10.17182/hepdata.15028

This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is <nch>=20.71±0.04(stat)±0.77(syst) and the dispersionD=6.28±0.03(stat)±0.43(syst). The data are compared with the results at lower energies and with the predictions of phenomenological models. The Lund parton shower model describes the data reasonably well. The multiplicity distributions show approximate KNO-scaling. They also show positive forward-backward correlations that are strongest in the central region of rapidity and for particles of opposite charge.

5 data tables

Charged particle multiplicity distribution for the raw data in full phase space.

Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.

Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.

More…

Measurement of the cross-sections of the reactions e+ e- ---> gamma gamma and e+ e- ---> gamma gamma gamma at LEP

The OPAL collaboration Akwawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 257 (1991) 531-540, 1991.
Inspire Record 302587 DOI 10.17182/hepdata.29464

The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.

3 data tables

No description provided.

No description provided.

No description provided.


A measurement of the Z0 invisible width by single photon counting.

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 50 (1991) 373-384, 1991.
Inspire Record 302586 DOI 10.17182/hepdata.14980

The OPAL detector at LEP is used to measure the branching ratio of theZ0 into invisible particles by measuring the cross section of single photon events ine+e− collisions at centre-of-mass energies near theZ0 resonance. In a data sample of 5.3 pb−1, we observe 73 events with single photons depositing more than 1.5 GeV in the electromagnetic calorimeter, with an expected background of 8±2 events not associated with invisibleZ0 decay. With this data we determine theZ0 invisible width to be 0.50±0.07±0.03 GeV, where the first error is statistical and the second systematic. This corresponds to 3.0±0.4±0.2 light neutrino generations in the Standard Model.

1 data table

No description provided.


Test of QED in e+ e- ---> gamma gamma at LEP

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 250 (1990) 199-204, 1990.
Inspire Record 298843 DOI 10.17182/hepdata.29550

We have measured the cross-section of the reaction e + e − → γγ at center of mass energies around the Z 0 mass. The results are in good agreement with QED predictions. For the QED cutoff parameters the limit of Λ + > 103 GeV and Λ − 118 GeV are found. For the decays Z 0 → γ ,Z 0 → π 0 γ , Z 0 → γγγ we find upper limits of 2.9 × 10 −4 ,2.9×10 −4 ,4.1×10 −4 and 1.2×10 −4 , respectively. All limits are at 95% CL.

1 data table

No description provided.


Determination of alpha-s from energy-energy correlations measured on the Z0 resonance.

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 257 (1991) 469-478, 1991.
Inspire Record 324427 DOI 10.17182/hepdata.29467

We present a study of energy-energy correlations based on 83 000 hadronic Z 0 decays. From this data we determine the strong coupling constant α s to second order QCD: α s (91.2 GeV)=0.121±0.004(exp.)±0.002(hadr.) −0.006 +0.009 (scale)±0.006(theor.) from the energy-energy correlation and α s (91.2 GeV)=0.115±0.004(exp.) −0.004 +0.007 (hadr.) −0.000 +0.002 (scale) −0.005 +0.003 (theor.) from its asymmetry using a renormalization scale μ 1 =0.1 s . The first error (exp.) is the systematic experimental uncertainly, the statistical error is negligible. The other errors are due to hadronization (hadr.), renormalization scale (scale) uncertainties, and differences between the calculated second order corrections (theor.).

3 data tables

Statistical errors are equal to or less than 0.6 pct in each bin. There is also a 4 pct systematic uncertainty.

ALPHA_S from the EEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.

ALPHA_S from the AEEC measurement.. The first error given is the experimental error which is mainly the overall systematic uncertainty: the first (DSYS) error is due to hadronization, the second to the renormalization scale, and the third differences between the calculated and second order corrections.


Measurement of the inclusive production of neutral pions and charged particles on the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 259 (1991) 199-208, 1991.
Inspire Record 314407 DOI 10.17182/hepdata.29468

We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.

6 data tables

No description provided.

Error is dominated by systematic uncertainties.

No description provided.

More…

STUDY OF p p AND LAMBDA LAMBDA PRODUCTION IN e+ e- ANNIHILATION AT 10-GeV CENTER-OF-MASS ENERGY

The ARGUS collaboration Albrecht, H. ; Ehrlichmann, H. ; Glaser, R. ; et al.
Z.Phys.C 49 (1991) 349-354, 1991.
Inspire Record 295621 DOI 10.17182/hepdata.15433

None

8 data tables

Ratio per multihadron event for continuum data.

Ratio per multihadron event for continuum data.

Ratio per multihadron event for continuum data.

More…

Measurement of the Z0 line shape parameters and the electroweak couplings of charged leptons

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 175-208, 1991.
Inspire Record 315269 DOI 10.17182/hepdata.14859

None

11 data tables

DATA FROM 1989 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.

DATA FROM 1990 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.

Cross sections corrected for the effects of efficiency and kinematic cuts and background. Data from 1989 run, reanalysed.

More…

Improved measurements of electroweak parameters from Z decays into fermion pairs

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Z.Phys.C 53 (1992) 1-20, 1992.
Inspire Record 317141 DOI 10.17182/hepdata.14857

The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.

7 data tables

Statistical errors only.

No description provided.

No description provided.

More…

Measurement of the forward - backward asymmetry in Z ---> b anti-b and Z ---> c anti-c

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 263 (1991) 325-336, 1991.
Inspire Record 316148 DOI 10.17182/hepdata.29386

From a sample of 150 000 hadronic Z decays collected with the ALEPH detector at LEP, events containing prompt leptons are used to measure the forward-backward asymmetries for the channels Z → b b and Z → c c , giving the results A FB b =0.126±0.028±0.012 and A FB c =0.064±0.039±0.030. These asymmetries correspond to the value of effective electroweak mixing angle at the Z mass sin 2 θ W ( m Z 2 ) = 0.2262±0.0053.

4 data tables

b asymmetry from high pt leptons.

b asymmetry from full pt range.

b asymmetry from full pt range.

More…

Measurement of electroweak parameters from hadronic and leptonic decays of the Z0

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 51 (1991) 179-204, 1991.
Inspire Record 314418 DOI 10.17182/hepdata.14940

From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).

15 data tables

Additional systematic uncertainty of 0.4 pct.

Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.

Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.

More…

A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 260 (1991) 240-248, 1991.
Inspire Record 314619 DOI 10.17182/hepdata.29420

Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.

3 data tables

Fully corrected cross sections.

Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.

Effective weak mixing angle.


A Study of K0(s) production in Z0 decays

The OPAL collaboration Alexander, G. ; Allison, J. ; Allport, P.P. ; et al.
Phys.Lett.B 264 (1991) 467-475, 1991.
Inspire Record 316151 DOI 10.17182/hepdata.29375

The production of K 0 mesons in e + e − interactions at center of mass energies in the region of the Z 0 mass has been investigated with the OPAL detector at LEP. The rate is found to be 2.10±0.02±0.14 K 0 , Z 0 per hadronic event. The predictions from the JETSET and HERWIG generators agree very well with both the rate and the scale invariant cross section (1/σ had β) (dσ/d x E ) for K 0 production. Comparisons of the inclusive momentum spectrum with predictions of an analytical QCD formula and with data from lower center of mass energies are presented.

3 data tables

No description provided.

No description provided.

K0 multiplicity per hadronic event.


The reaction e+ e- ---> gamma gamma (gamma) at Z0 energies

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 268 (1991) 296-304, 1991.
Inspire Record 317825 DOI 10.17182/hepdata.29352

The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.

2 data tables

Radiative effects are subtracted.

Radiative effects subtracted.


Strangeness enhancement in central S + S collisions at 200-GeV/nucleon.

The NA35 collaboration Baechler, J. ; Bartke, J. ; Bialkowska, H. ; et al.
Nucl.Phys.A 525 (1991) 221C-226C, 1991.
Inspire Record 328899 DOI 10.17182/hepdata.36820

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Charged particle multiplicity distributions in restricted rapidity intervals in Z0 hadronic decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Z.Phys.C 52 (1991) 271-281, 1991.
Inspire Record 324035 DOI 10.17182/hepdata.14860

The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.

15 data tables

Data for both hemispheres.

Data for both hemispheres.

Data for both hemispheres.

More…

A Study of charged particle multiplicities in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 53 (1992) 539-554, 1992.
Inspire Record 321190 DOI 10.17182/hepdata.14774

We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.

8 data tables

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.

Distribution for single hemisphere.

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.. Contributions from K0S and LAMBDA decays have been subtracted.

More…

Measurement of three jet distributions sensitive to the gluon spin in e+ e- annihilations at S**(1/2) = 91-GeV

The OPAL collaboration Alexander, G. ; Allison, John ; Allport, P.P. ; et al.
Z.Phys.C 52 (1991) 543-550, 1991.
Inspire Record 317142 DOI 10.17182/hepdata.14852

None

4 data tables

Data at Parton level.

Ratio data/(Monte Carlo) at Parton level.

Data at Parton level.. Distribution of Ellis-Karliner angle.

More…

Production of strange particles in the hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 275 (1992) 231-242, 1992.
Inspire Record 322503 DOI 10.17182/hepdata.29267

An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.

7 data tables

No description provided.

No description provided.

No description provided.

More…

A Direct determination of the number of light neutrino families from e+ e- ---> neutrino anti-neutrino gamma at LEP

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 275 (1992) 209-221, 1992.
Inspire Record 324176 DOI 10.17182/hepdata.29260

The L3 detector at LEP has been used to determine the number of light neutrino families by measuring the cross section of single photon even in e + e − collisions at energies near the Z 0 resonance. We have observed 61 single photon candidates with more than 1.5 GeV of deposited energy in the barrel electromagnetic calorimeter, for a total integrated luminosity of 3.0 pb −1 . From a likelihood fir to the single photon cross sections, we determin N ν =3.24 ± 0.46 ( statistical ) ±0.22 ( systematic ).

1 data table

Corrected single photon cross sections. Errors represent 68 pct CL intervals and take into account the background fluctuations.


Measurement of the isolated prompt photon cross-sections in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 2734-2738, 1992.
Inspire Record 333081 DOI 10.17182/hepdata.19869

We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.

1 data table

Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.


Measurement of the production rates of eta and eta-prime in hadronic Z decays

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Phys.Lett.B 292 (1992) 210-220, 1992.
Inspire Record 334575 DOI 10.17182/hepdata.29156

The decays η → γγ and η ′ → ηπ + π − have been observed in hadronic decays of the Z produced at LEP. The fragmentation functions of both the η and η ′ have been measured. The measured multiplicities for x > 0.1 are 0.298±0.023±0.021 and 0.068±0.016 for η and η ′ respectively. While the fragmentation function for the η is fairly well described by the JETSET Monte Carlo, it is found that the production rate of the η ′ is a factor of four less than the corresponding prediction.

3 data tables

No description provided.

Additional 7 pct systematic error.

Additional 23 pct systematic error.


Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Z.Phys.C 55 (1992) 39-62, 1992.
Inspire Record 334954 DOI 10.17182/hepdata.14566

The structure of hadronic events fromZ0 decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower andO(α2s matrix element based models with string fragmentation describe the data well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on theO(α2s calculation fails to reproduce the energy dependences of these mean values.

16 data tables

Unfolded Thrust distribution. Statistical error includes statistical uncertainties of the data as well as of the unfolding Monte Carlo Sample. The systematic error combines the uncertainties of measurements and of the unfolding procedure.

Unfolded Major distribution where Major is defined in the same way as Thrust but is maximized in a plane perpendicular to the Thrust axis.

Unfolded Minor distribution where the minor axis is defined to give an orthonormal system.

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

41 data tables

Sphericity distribution.

Sphericity distribution.

Aplanarity distribution.

More…