Polarization Parameter in p-p Scattering from 1.7 to 6.1 BeV

Grannis, P. ; Arens, J. ; Betz, F. ; et al.
Phys.Rev. 148 (1966) 1297-1302, 1966.
Inspire Record 50914 DOI 10.17182/hepdata.26642

The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.

6 data tables
More…

LAMBDA POLARIZATION IN INCLUSIVE K- p INTERACTIONS AT 10-GeV/c AND 16-GeV/c

The Aachen-Berlin-CERN-London-Vienna collaboration Grassler, H. ; Honecker, R. ; Laven, H. ; et al.
Nucl.Phys.B 136 (1978) 386, 1978.
Inspire Record 129719 DOI 10.17182/hepdata.35096

A strong negative transverse polarization P z is found for forward produced lambdas observed in 10 and 16 GeV/ c K − p interactions. This indicates that exchanges of natural spin-parity are dominant in the production process. Using the polarization results, the d σ d u′ distributions for natural and unnatural spin-parity exchanges are derived. For unnatural exchanges, a dip is observed at u ′≅0.3 GeV 2 , which can be explained as a nonsense-wrong-signature zero of the N β trajectory. The value of P z for forward producted lambdas is constant with energy. This is in agreement with the triple-Regge model prediction, as is the fact that P z is constant as a function of M 2 s . The two non-transverse polarization components, P x and P y , have been measured and are found to be consistent with zero for all x values, unlike P z .

4 data tables

No description provided.

No description provided.

No description provided.

More…

Measurements of Production Polarization and Decay Asymmetry for $\Xi^-$ Hyperons

Rameika, R. ; Beretvas, A. ; Deck, L. ; et al.
Phys.Rev.D 33 (1986) 3172-3179, 1986.
Inspire Record 233005 DOI 10.17182/hepdata.23517

The polarization of Ξ− hyperons produced by 400-GeV protons in the reaction p+Be→Ξ−+X has been measured as a function of momentum at two production angles. The average polarization for the full sample (192 110 events) was -0.108±0.007. Comparisons are made with polarization measurements for other hyperons produced under similar conditions. From the same data, αΛαΞ was measured to be -0.303±0.004±0.004, where αΛ is the asymmetry parameter in the decay Λ→pπ−, αΞ is the asymmetry parameter in the decay Ξ−→Λπ−, and the uncertainties are statistical and systematic, respectively. This yields αΞ=-0.472±0.006±0.011, where the systematic uncertainty is dominated by the uncertainty in αΛ. An updated test of the ΔI=1/2 rule in Ξ decay is presented.

2 data tables

No description provided.

No description provided.


POLARIZATION OF XI0 AND LAMBDA HYPERONS PRODUCED BY 400-GEV/C PROTONS

Heller, Kenneth J. ; Cox, P.T. ; Dworkin, J. ; et al.
Phys.Rev.Lett. 51 (1983) 2025-2028, 1983.
Inspire Record 196831 DOI 10.17182/hepdata.20515

The polarization of Ξ0 and Λ hyperons produced by 400-GeV protons interacting with a beryllium target has been measured in the projectile fragmentation region. The Ξ0 polarization agrees in sign, magnitude, and kinematic behavior with that of Λ. The target dependence of these Ξ0 and Λ polarizations was also investigated with use of Cu and Pb targets.

2 data tables

No description provided.

No description provided.


Polarization of $\Sigma^+$ Hyperons Produced by 400 GeV Protons

Wilkinson, C. ; Handler, R. ; Lundberg, B. ; et al.
Phys.Rev.Lett. 46 (1981) 803-806, 1981.
Inspire Record 169869 DOI 10.17182/hepdata.20646

The polarization of 26 000 Σ+ hyperons produced by 400-GeV protons on Be has been measured. The polarizations of Σ+ and Λ hyperons have the opposite sign. The magnitude increases with momentum at 5-mrad production angle, and averages 22% over the momentum range 140 to 280 GeV/c.

2 data tables

No description provided.

No description provided.


MEASUREMENT OF DECAY PARAMETERS AND POLARIZATION IN INCLUSIVE XI- PRODUCTION FROM K- P INTERACTIONS

Bensinger, J. ; Kirsch, L. ; Lomanno, F.D. ; et al.
Nucl.Phys.B 252 (1985) 561-577, 1985.
Inspire Record 216909 DOI 10.17182/hepdata.33790

We present a measurement of the polarization and decay asymmetry parameters of the Ξ − inclusively produced in the forward direction in K − p interactions at 5 GeV/ c . The Ξ − decay parameters have been determined to be α Ξ = −0.405 ± 0.029 and Φ Ξ = 14.7° ± 16.0° from a sample of 20 865 events. A linear rise of the Ξ − polarization has been seen with respect to the transverse momentum of the Ξ − , reaching a maximum of 49 ± 4% at P ⊥ ∼ 0.50 GeV/ c . The value of α Ξ is consistent with the world average prior to 1975, but below the value measured by two recent experiments.

1 data table

No description provided.


A PRODUCTION IN K- P INTERACTIONS AT 32-GeV/c. FRANCE-SOVIET UNION AND CERN-SOVIET UNION COLLABORATIONS

Gensch, U. ; Becker, L. ; Kriegel, U. ; et al.
Nucl.Phys.B 173 (1980) 154-174, 1980.
Inspire Record 158995 DOI 10.17182/hepdata.34463

Lambda production is studied in K − p interactions at 32 GeV/ c . The total Λ cross section is 2.31±0.03 mb . Using the measured Λγ combinations we find that (31±4)% of all Λ's are produced via the Σ 0 → Λγ decay. About 60% of the Λ's are associated with either a N N or K K pair; about 40% of the Λ's are produced through the hypercharge annihiltion reaction K − p→ Λ + π 'a. The two-peak structure of the invariant x distribution can be related to fragmentation processes. The Λ is found to be unpolarized in the target fragmentation region, whereas a transverse polarization is observed for forward produced Λ's. As a function of p ⊥, a polarization effect is measured at medium p ⊥.

4 data tables

No description provided.

No description provided.

No description provided.

More…

$\Lambda^{0}$ polarization from the reaction $\gamma + p=K^{+} + \Lambda^{0}$ in the energy range (950÷1050) MeV

Borgia, B. ; Grilli, M. ; Joos, P. ; et al.
Nuovo Cim. 32 (1964) 218-223, 1964.
Inspire Record 1185014 DOI 10.17182/hepdata.37674

None

1 data table

Axis error includes +- 0.0/0.0 contribution (?////).


$\Lambda^{0}$-polarization from the reaction $\gamma+p = \Lambda^{0}+K^{+}$ in the energy range (950÷1050)MeV

Grilli, M. ; Mezzetti, L. ; Nigro, M. ; et al.
Nuovo Cim. 38 (1965) 1467-1488, 1965.
Inspire Record 1185245 DOI 10.17182/hepdata.37616

We report some measurements of the Λ polarization in the reaction Υ+P=K+Λ+0, for 950<Eγ<1050 MeV. In Sects. 1 and 2 the experimental apparatus and the detection techniques used are described. In Sect.3 we discuss our results and those of other groups and compare them with the theoretical predictions.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////).


Polarization in proton-beryllium and proton-proton scattering at 1.7 GeV

Bareyre, P. ; Detoeuf, J.F. ; Van Rossum, L. ; et al.
Nuovo Cim. 20 (1961) 1049-1066, 1961.
Inspire Record 1185005 DOI 10.17182/hepdata.37750

The polarization in p-Be and p-p scattering has been measured by counter techniques at a proton kinetic energy of 1.74 GeV. The maximum polarization in p-Be scattering was found to beP max==0.19±0.04 and occurs at an angleθ max⩾3.5°. Inelastic scatters were rejected when the inelastic momentum loss was more than about 1% in the first scatter (magnetic analysis) or more than about 5% in the second scatter (Čerenkov threshold counter). The maximum polarization in p-p scattering isP max=0.30±0.09 and occurs at an angle 35°<θ max<<55° (c.m.). The angular dependence of the polarization is consistent with a distribution proportional to sin 2θ within large statistical errors. Optical model calculations applied to the data on p-Be scattering yield an almost all imaginary central potential of about 43 MeV and a spin-orbit potential of between 0.9 MeV and 2.0 MeV which is also almost all imaginary, in contrast with the predominantly real spin-orbit potential needed to explain the large polarization in the region of several hundred MeV.

2 data tables

'1'. '2'. '3'. '4'.

'1'. '2'. '3'. '5'.