Proton Proton Elastic Scattering at 6-GeV/c with Three Spins Measured

Ratner, L.G. ; Borghini, M. ; de Boer, W. ; et al.
Phys.Rev.D 15 (1977) 604-608, 1977.
Inspire Record 124115 DOI 10.17182/hepdata.24627

The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range p⊥2 = 0.6−1.0 (GeV/c)2 using a 65%-polarized target and a 75%-polarized extracted beam of intensity 3 × 109 protons/pulse. We simultaneously measured the polarization of the recoil proton with a well-calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at large p⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data give the relative magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the double-flip transversity cross sections are nonzero.

1 data table

No description provided.


Measurement of Proton Proton Elastic Scattering in Pure Initial Spin States at 11.75-GeV/c

Abe, K. ; Fernow, Richard C. ; Mulera, T.A. ; et al.
Phys.Lett.B 63 (1976) 239-244, 1976.
Inspire Record 114488 DOI 10.17182/hepdata.27638

The elastic cross section for proton proton scattering at 11.75 GeV/ c was measured at the Argonne ZGS using a 50% polarized target. In the range p ⊥ 2 =0.6 → 2.2 (GeV/ c ) 2 we obtained precise measurements of d σ d t(ij) for the ⇈ ⇊, and ⇅ initial spin states perpendicular to the scattering plane. We confirmed that the asymmetry parameter, A , decreases with energy in the diffraction peak, but is approximately energy-independent at large p ⊥ 2 . We found that the spin correlation parameter c nn acquires rather dramatic structure, and at large p ⊥ 2 seems to grow with energy.

1 data table

No description provided.


Spin Spin Interactions in High p-Transverse**2 Elastic p p Scattering

O'Fallon, J.R. ; Ratner, L.G. ; Schultz, P.F. ; et al.
Phys.Rev.Lett. 39 (1977) 733, 1977.
Inspire Record 5637 DOI 10.17182/hepdata.20968

We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.

1 data table

No description provided.


High (p-Transverse)**2 p p Elastic Scattering in Pure Initial Spin States

Miettinen, H.E. ; Abe, K. ; Fernow, Richard C. ; et al.
Phys.Rev.D 16 (1977) 549, 1977.
Inspire Record 5158 DOI 10.17182/hepdata.24479

We measured the cross section for proton-proton elastic scattering at 11.75 GeV/c using the Zero Gradient Synchrotron 52% polarized proton beam and a 60% polarized proton target. We measured dσdt(ij) in the ↑↑, ↓↓, and ↑↓ initial spin states perpendicular to the scattering plane in the range P⊥2=2.0−3.6 (GeV/c)2. We found that the asymmetry parameter A decreases smoothly with increasing P⊥2 in this range, and that the spin-spin correlation parameter Cnn may have a minimum near P⊥2=3 (GeV/c)2.

1 data table

No description provided.


Simultaneous Measurement of 2 and 3 Spins in Proton Proton Elastic Scattering at 6-GeV/c

Fernow, Richard C. ; Gray, S.W. ; Krisch, A.D. ; et al.
Phys.Lett.B 52 (1974) 243-246, 1974.
Inspire Record 89681 DOI 10.17182/hepdata.27931

The elastic cross section for proton proton scattering at 6 GeV c was measured using a 70% polarized beam and a 75% polarized target at the Argonne ZGS. In the range P ⊥ 2 = 0.5 → 2.0( GeV c ) 2 we obtained small error measurements for the ↑↑, ↓↓ and ↑↓ initial spin states perpendicular to the scattering plane. At P ⊥ 2 = 0.5 we also measured the recoil spin and found that the 5 different cross sections were very unequal.

2 data tables

No description provided.

No description provided.


Measurement of elastic proton proton scattering in pure initial-spin states

O' Fallon, J.R. ; Parker, E.F. ; Ratner, L.G. ; et al.
Phys.Rev.Lett. 32 (1974) 77-79, 1974.
Inspire Record 94699 DOI 10.17182/hepdata.21307

An experiment was done using an accelerated polarized proton beam and a polarized proton target. The elastic cross section for proton-proton scattering at 6.0 GeV/c and P⊥2=0.5−1.6 (GeV/c)2 was measured in the spin states ↑ ↑, ↓ ↓, and ↑ ↓ perpendicular to the scattering plane. The cross sections were found to be unequal by up to a factor of 2.

1 data table

No description provided.


New measurement of the total cross-section in proton proton scattering in pure spin states

de Boer, W. ; Fernow, Richard C. ; Krisch, A.D. ; et al.
Phys.Rev.Lett. 34 (1975) 558-559, 1975.
Inspire Record 107097 DOI 10.17182/hepdata.3352

We have remeasured the total cross section for proton-proton scattering at 2-6 GeV/c in the spin states ↑↑ and ↑↓ perpendicular to the beam direction. With the reduced errors significant differences were found between the two cross sections.

2 data tables

DIFFERENCE OF TOTAL CROSS SECTIONS FOR ANTIPARALLEL AND PARALLEL SPINS PERPENDICULAR TO THE BEAM DIRECTION.

No description provided.


Measurement of sigma(tot) in proton proton scattering in pure spin states

Parker, E.F. ; Ratner, L.G. ; Brown, B.C. ; et al.
Phys.Rev.Lett. 31 (1973) 783-786, 1973.
Inspire Record 83779 DOI 10.17182/hepdata.21350

An experiment was done using the new accelerated polarized proton beam at the Argonne National Laboratory zero-gradient synchrotron and a polarized proton target. The total cross section for proton-proton scattering at 3.5 GeV/c was measured in the spin states ↑↑ and ↑↓ perpendicular to the beam direction. The two cross sections were found to be equal within the experimental error of ±5%.

1 data table

TOTAL CROSS SECTION DIFFERENCE FOR PURE TRANSVERSE SPIN STATES.


Energy Dependence of Spin Spin Forces in 90-degrees (Center-of-mass) Elastic $p p$ Scattering

Lin, A. ; O'Fallon, J.R. ; Ratner, L.G. ; et al.
Phys.Lett.B 74 (1978) 273-276, 1978.
Inspire Record 129169 DOI 10.17182/hepdata.27461

We measured d σ d t(90° cm ) for ↑+ p ↑→ p + p from 1.75 to 5.5 GeV/ c , using the Argonne zero-gradient synchrotron 70% polarized proton beam and a 70% polarized proton target. We found that the spin-spin correlation parameter. A nn , equals 60% at low energy, then drops sharply to about 10% near 3.5 GeV/ c , and remains constant up to 5.5 GeV/ c .

2 data tables

ANALYZING POWER. QUOTED ERRORS DUE TO 4.3 PCT POINT TO POINT RELATIVE ERROR.

THE SPIN-SPIN CORRELATION PARAMETER CNN IS NOW DENOTED BY ANN ACCORDING TO THE NEW ANN ARBOR CONVENTION.


Spin Dependence of High p-Transverse**2 Elastic p p Scattering

Crabb, D.G. ; Fernow, Richard C. ; Hansen, P.H. ; et al.
Phys.Rev.Lett. 41 (1978) 1257, 1978.
Inspire Record 7117 DOI 10.17182/hepdata.20867

We measured dσdt for p↑+p↑→p+p from P⊥2=4.50 to 5.09 (GeV/c)2 at 11.75 GeV/c. We used a 59%-polarized proton beam and a 71%-polarized proton target with both spins oriented perpendicular to the scattering plane. In these large-P⊥2 hard-scattering events, spin effects are very large and the ratio (dσdt)↑↑:(dσdt)↑↓ grows rapidly with increasing P⊥2, reaching a value of 4 at 90° (c.m.). Thus, hard elastic scattering, which is presumably due to the direct scattering of the protons' constituents, may only occur when the two incident protons' spins are parallel.

1 data table

THE ERRORS INCLUDE STATISTICAL AND SYSTEMATIC ERRORS ADDED IN QUADRATURE. THE PARALLEL/ANTIPARALLEL SPIN CROSS SECTION RATIO IS (1+CNN)/(1-CNN).