Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 114 (2015) 061801, 2015.
Inspire Record 1317640 DOI 10.17182/hepdata.66763

A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.

6 data tables match query

Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".

Expected and observed 95% CL cross section exclusion contours for top squark pair production in the plane of top squark lifetime ($c\tau$) and top squark mass. These limits assume a branching fraction of 100\% through the RPV vertex $\tilde{t}$ $\to$ b l, where the branching fraction to any lepton flavor is equal to 1/3. As indicated in the plot, the region to the left of the contours is excluded by this search.

Electron reconstruction efficiency as function of its tranverse impact parameter, $d_0$.

More…

Version 2
Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 142, 2022.
Inspire Record 1972986 DOI 10.17182/hepdata.115022

A measurement of the inclusive jet production in proton-proton collisions at the LHC at $\sqrt{s}$ = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum $p_\mathrm{T}$ and the absolute jet rapidity $\lvert y \rvert$. The anti-$k_\mathrm{T}$ clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet $p_\mathrm{T}$ from 97 GeV up to 3.1 TeV and $\lvert y \rvert\lt$ 2.0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb$^{-1}$ (33.5 fb$^{-1}$). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as $\alpha_\mathrm{S}$(Z) = 0.1170 $\pm$ 0.0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient $c_1$ of 4-quark contact interactions. Note added: in the Addendum to this paper, available as Appendix B in this document, an improved value of $\alpha_\mathrm{S}$(Z) = 0.1166 $\pm$ 0.0017 has been extracted. This result supersedes the number in the above abstract of the original publication.

80 data tables match query

The inclusive jet production cross section as a function of the jet transverse momentum~$p_\mathrm{T}$ measured in $|y| < 0.5$ for jets clustered using the anti-$k_\mathrm{t}$ algorithm with $R=0.4$.

The inclusive jet production cross section as a function of the jet transverse momentum~$p_\mathrm{T}$ measured in $|y| < 0.5$ for jets clustered using the anti-$k_\mathrm{t}$ algorithm with $R=0.4$.

The inclusive jet production cross section as a function of the jet transverse momentum~$p_\mathrm{T}$ measured in $0.5 < |y| < 1.0$ for jets clustered using the anti-$k_\mathrm{t}$ algorithm with $R=0.4$.

More…

Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 778 (2018) 101-127, 2018.
Inspire Record 1609262 DOI 10.17182/hepdata.83194

A search for the production of Higgs boson pairs in proton-proton collisions at a centre-of-mass energy of 13 TeV is presented, using a data sample corresponding to an integrated luminosity of 35.9 inverse femtobarns collected with the CMS detector at the LHC. Events with one Higgs boson decaying into two bottom quarks and the other decaying into two tau leptons are explored to investigate both resonant and nonresonant production mechanisms. The data are found to be consistent, within uncertainties, with the standard model background predictions. For resonant production, upper limits at the 95% confidence level are set on the production cross section for Higgs boson pairs as a function of the hypothesized resonance mass and are interpreted in the context of the minimal supersymmetric standard model. For nonresonant production, upper limits on the production cross section constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to about 30 (25) times the prediction of the standard model.

4 data tables match query

Upper limits at the 95% CL for nonresonant HH production with anomalous lambda_HHH and yt couplings

Upper limits at the 95% CL for nonresonant HH production with anomalous couplings (shape benchmarks)

Upper limits at the 95% CL for nonresonant HH production with anomalous lambda_HHH and yt couplings, compared for the decay channels investigated

More…

Version 2
Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 07 (2021) 027, 2021.
Inspire Record 1851456 DOI 10.17182/hepdata.102459

Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1.12 $\pm$ 0.09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations.

3 data tables match query

Observed and expected correlations between the parameters in the production mode signal strength fit.

Observed and expected correlations between the parameters in the production mode signal strength fit.

The observed and expected impacts from the various sources of systematic uncertainty on the per-production mode signal strengths. The expected impacts are derived using an asimov dataset.


Search for top squark production in fully-hadronic final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 104 (2021) 052001, 2021.
Inspire Record 1849522 DOI 10.17182/hepdata.103065

A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.

36 data tables match query

The observed 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.

The expected 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.

The observed exclusion contour of the T2tt simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$). No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.

More…

Observation of the production of three massive gauge bosons at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 151802, 2020.
Inspire Record 1802096 DOI 10.17182/hepdata.95926

The first observation is reported of the combined production of three massive gauge bosons (VVV with V = W,Z) in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis is based on a data sample recorded by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 137 fb$^{-1}$. The searches for individual WWW, WWZ, WZZ, and ZZZ production are performed in final states with three, four, five, and six leptons (electrons or muons), or with two same-sign leptons plus one or two jets. The observed (expected) significance of the combined VVV production signal is 5.7 (5.9) standard deviations and the corresponding measured cross section relative to the standard model prediction is 1.02 $^{+0.26}_{-0.23}$. The significances of the individual WWW and WWZ production are 3.3 and 3.4 standard deviations, respectively. Measured production cross sections for the individual triboson processes are also reported.

2 data tables match query

Best fit values of the signal strengths for the BDT-based analyses (blue solid circles) and the sequential-cut analyses (black open circles). The error bars represent the total uncertainty. For ZZZ production, a 95% confidence level upper limit is shown. The stated numerical values correspond to the BDT-based analysis.

Measured cross sections obtained with the BDT-based analyses. The uncertainties listed are statistical and systematic. For the results listed in the left (right) half of the table, Higgs boson contributions are counted as signal (background). The VVV cross section is calculated from the fit for \mu_{comb}. For ZZZ production, 95% confidence level upper limits are reported.


Observation of top quark production in proton-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 119 (2017) 242001, 2017.
Inspire Record 1624694 DOI 10.17182/hepdata.79668

The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of sqrt(s[NN]) = 8.16 TeV. The measurement is performed using events with exactly one isolated electron or muon and at least four jets. The data sample corresponds to an integrated luminosity of 174 inverse nanobarns. The significance of the tt-bar signal against the background-only hypothesis is above five standard deviations. The measured cross section is sigma[tt-bar] = 45 +/- 8 nb, consistent with predictions from perturbative quantum chromodynamics.

7 data tables match query

Invariant mass distributions of the W candidate, $m_{jj'}$, in the 0 b category after all selections. The error bars indicate the statistical uncertainties.

Invariant mass distributions of the W candidate, $m_{jj'}$, in the 1 b category after all selections. The error bars indicate the statistical uncertainties.

Invariant mass distributions of the W candidate, $m_{jj'}$, in the $\geq$2 b category after all selections. The error bars indicate the statistical uncertainties.

More…

Evidence for top quark production in nucleus-nucleus collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 222001, 2020.
Inspire Record 1802092 DOI 10.17182/hepdata.93878

Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10$^{-6}$ seconds, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first-ever evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon centre-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production ($\sigma_\mathrm{t\bar{t}}$) via the decay into charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, $\sigma_\mathrm{t\bar{t}} = $ 2.54 $^{+0.84}_{-0.74}$ and 2.03 $^{+0.71}_{-0.64}$ $\mu$b, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.

1 data table match query

Inclusive $\mathrm{t\bar{t}}$ cross sections measured with two methods, relying on the leptonic information alone ($2\ell_{\mathrm{OS}}$), and the second one exploits, in addition, the presence of bottom quarks ($2\ell_{\mathrm{OS}}+N_{\mathrm{b-tag}}$), in the combined $\mathrm{e}^+\mathrm{e}^-$, $\mu^+\mu^-$, and $\mathrm{e}^\pm\mu^\mp$ final states in PbPb collisions at 5.02 TeV, and pp results at $\sqrt{\smash[b]{s}}=5.02$ TeV (scaled by $A^2$) from JHEP 03 (2018) 115. The measurements are compared with theoretical predictions at NNLO+NNLL accuracy in QCD. The inner (outer) experimental uncertainty bars include statistical (statistical and systematic, added in quadrature) uncertainties. The inner (outer) theoretical uncertainty bands correspond to nuclear or free-nucleon PDF (PDF and scale, added in quadrature) uncertainties.


Measurement of electroweak WZ boson production and search for new physics in WZ $+$ two jets events in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 281-307, 2019.
Inspire Record 1713565 DOI 10.17182/hepdata.89174

A measurement of WZ electroweak (EW) vector boson scattering is presented. The measurement is performed in the leptonic decay modes WZ $\to$ $\ell\nu\ell'\ell'$, where $\ell, \ell' = $ e, $\mu$. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV at the LHC collected with the CMS detector and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The WZ plus two jet production cross section is measured in fiducial regions with enhanced contributions from EW production and found to be consistent with standard model predictions. The EW WZ production in association with two jets is measured with an observed (expected) significance of 2.2 (2.5) standard deviations. Constraints on charged Higgs boson production and on anomalous quartic gauge couplings in terms of dimension-eight effective field theory operators are also presented.

5 data tables match query

The measured WZ cross section in the tight EWK fiducial region.

The measured WZ cross section in the loose EWK fiducial region.

The measured EWK WZ scale factor (mu) in the tight EWK fiducial region. The uncertainty is the combined stastical uncertianty and the systematic uncertainty including experimental and theortical sources

More…

Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 122 (2019) 121803, 2019.
Inspire Record 1704939 DOI 10.17182/hepdata.89935

This Letter describes a search for Higgs boson pair production using the combined results from four final states: bb$\gamma\gamma$, bb$\tau\tau$, bbbb, and bbVV, where V represents a W or Z boson. The search is performed using data collected in 2016 by the CMS experiment from LHC proton-proton collisions at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Limits are set on the Higgs boson pair production cross section. A 95% confidence level observed (expected) upper limit on the nonresonant production cross section is set at 22.2 (12.8) times the standard model value. A search for narrow resonances decaying to Higgs boson pairs is also performed in the mass range 250-3000 GeV. No evidence for a signal is observed, and upper limits are set on the resonance production cross section.

10 data tables match query

Expected and observed 95\% \CL exclusion limits on the HH production signal strength for the different channels and their combination.

Expected and observed 95\% \CL exclusion limits on the HH production cross section as a function of the k_lambda parameter.

Expected and observed 95\% \CL exclusion limits on the production of a narrow, spin zero resonance (X) decaying into a pair of Higgs bosons.

More…