Transverse spin-dependent azimuthal correlations of charged pion pairs measured in p$^\uparrow$+p collisions at $\sqrt{s}$ = 500 GeV

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Lett.B 780 (2018) 332-339, 2018.
Inspire Record 1632938 DOI 10.17182/hepdata.105868

The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized $p^\uparrow+p$ collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons. This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb$^{-1}$ integrated luminosity of $p^\uparrow+p$ collisions at $\sqrt{s}=500$ GeV, an increase of more than a factor of ten compared to our previous measurement at $\sqrt{s}=200$ GeV. Non-zero asymmetries sensitive to transversity are observed at a $Q^2$ of several hundred GeV and are found to be consistent with the former measurement and a model calculation. %we observe consistent with the former measurement are observed.} We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.

0 data tables match query

Distributions of charged hadrons associated with high transverse momentum particles in p p and Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 95 (2005) 152301, 2005.
Inspire Record 675307 DOI 10.17182/hepdata.96233

Charged hadrons in 0.15 < pt < 4 GeV/c associated with particles of pt^trig > 4 GeV/c are reconstructed in pp and Au+Au collisions at sqrt(s_NN)=200 GeV. The associated multiplicity and pt magnitude sum are found to increase from pp to central Au+Au collisions. The associated pt distributions, while similar in shape on the near side, are significantly softened on the away side in central Au+Au relative to pp and not much harder than that of inclusive hadrons. The results, consistent with jet quenching, suggest that the away-side fragments approach equilibration with the medium traversed.

0 data tables match query

Measurements of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.Lett. 128 (2022) 202301, 2022.
Inspire Record 1946124 DOI 10.17182/hepdata.114372

We report precision measurements of hypernuclei ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ lifetimes obtained from Au+Au collisions at \snn = 3.0 GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ mid-rapidity yields in Au+Au collisions at \snn = 3.0 GeV. ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221\pm15(\rm stat.)\pm19(\rm syst.)$ ps for ${}^3_\Lambda \rm{H}$ and $218\pm6(\rm stat.)\pm13(\rm syst.)$ ps for ${}^4_\Lambda \rm{H}$. The $p_T$-integrated yields of ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^4_\Lambda \rm{H}$ is different for 0--10% and 10--50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^3_\Lambda \rm{H}$ yield well, while underestimating the ${}^4_\Lambda \rm{H}$ yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^3_\Lambda \rm{H}$ and ${}^4_\Lambda \rm{H}$ yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

0 data tables match query

Measurement of D$^0$-meson + hadron two-dimensional angular correlations in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV

The STAR collaboration Adam, J. ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 014905, 2020.
Inspire Record 1767419 DOI 10.17182/hepdata.95209

Open heavy flavor hadrons provide unique probes of the medium produced in ultra-relativistic heavy-ion collisions. Due to their increased mass relative to light-flavor hadrons, long lifetime, and early production in hard-scattering interactions, they provide access to the full evolution of the partonic medium formed in heavy-ion collisions. This paper reports two-dimensional (2D) angular correlations between neutral $D$-mesons and unidentified charged particles produced in minimum-bias Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. $D^0$ and $\bar{D}^0$ mesons are reconstructed via their weak decay to $K^{\mp} \pi^{\pm}$ using the Heavy Flavor Tracker (HFT) in the Solenoidal Tracker at RHIC (STAR) experiment. Correlations on relative pseudorapidity and azimuth $(\Delta\eta,\Delta\phi)$ are presented for peripheral, mid-central and central collisions with $D^0$ transverse momentum from 2 to 10 GeV/$c$. Attention is focused on the 2D peaked correlation structure near the triggered $D^0$-meson, the {\em near-side} (NS) peak, which serves as a proxy for a charm-quark containing jet. The correlated NS yield of charged particles per $D^0$-meson and the 2D widths of the NS peak increase significantly from peripheral to central collisions. These results are compared with similar correlations using unidentified charged particles, consisting primarily of light-flavor hadrons, at similar trigger particle momenta. Similar per-trigger yields and widths of the NS correlation peak are observed. The present results provide additional evidence that $D^0$-mesons undergo significant interactions with the medium formed in heavy-ion collision and show, for the first time, significant centrality evolution of the NS 2D peak in the correlations of particles associated with a heavy-flavor hadron produced in these collisions.

0 data tables match query