CROSS-SECTION FOR THE INVERSE BETA DECAY OF THE PROTON FROM NUCLEAR REACTOR MEASUREMENTS

Afonin, A.I. ; Bogatov, S.A. ; Borovoi, A.A. ; et al.
JETP Lett. 38 (1983) 436-438, 1983.
Inspire Record 205424 DOI 10.17182/hepdata.16912

None

1 data table match query

Axis error includes +- 9./9. contribution.


Mean multiplicities of the final hadron states in neutrino nuclear interactions at E(nu) = 8.7-GeV

Aleshin, Yu.D. ; Egorov, O.K. ; Smirnitsky, V.A. ; et al.
J.Exp.Theor.Phys. 83 (1996) 208-209, 1996.
Inspire Record 431676 DOI 10.17182/hepdata.17007

None

1 data table match query

No description provided.


Inclusive characteristics of neutrino scattering at the nuclei of a photographic emulsion at energies of E(nu) = 3-GeV - 30-GeV

Aleshin, Yu.D. ; Egorov, O.K. ; Smirnitsky, V.A. ; et al.
J.Exp.Theor.Phys. 83 (1996) 205-207, 1996.
Inspire Record 431675 DOI 10.17182/hepdata.17061

None

1 data table match query

No description provided.


Interactions of relativistic Li-6 nuclei with photoemulsion nuclei.

Adamovich, M.I. ; Konorov, I.A. ; Larionova, V.G. ; et al.
Phys.Atom.Nucl. 62 (1999) 1378-1387, 1999.
Inspire Record 512748 DOI 10.17182/hepdata.17087

Inelastic interactions of nuclei accelerated to a momentum of 4.5 GeV/$c$ per projectile nucleon with photoemulsion nuclei have been investigated. The main features of these interactions - mean ranges of $^6$Li nuclei, mean multiplicities of secondaries, the isotopic composition of fragments, fragmentation channels, and the mean transverse momenta of projectile fragments - have been measured. The probability of the charge-exchange reaction featuring lithium nuclei has been determined. The results obtained for the $^6$Li nucleus have been compared with data for other nuclei. The observed features of $^6$Li interactions with other nuclei indicate that the $^6$Li structure in the form of the loosely bound system consisting of an $\alpha$-particle and a deuteron cluster clearly manifests itself in these interactions. Events resulting in the coherent dissociation of $^6$Li nuclei into $^4$He+$d$, $^3$He+$t$, and $t+d+p$ and involving low-lying excitations of $^6$Li have been observed.

3 data tables match query

No description provided.

No description provided.

No description provided.


Electroproduction of pions near the $\Delta(1236)$ isobar and the form-factor $G^*_M(q^2)$ of the $({\gamma} N\Delta)$ vertex

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 28 (1968) 148-151, 1968.
Inspire Record 52791 DOI 10.17182/hepdata.45279

The cross section for inelastic electron-proton scattering was measured at incident electron energies of 1.5 to 6 GeV by magnetic analysis of the scattered electrons at angles between 10° and 35°. For invariant masses of the hardonic final state W ⩽ 1.4 GeV. the measured spectra are compared with theoretical predictions for electroproduction of the Δ(1236) isobar. The magnetic dipole transition form factor G ∗ M ( q 2 ) of the (γ N Δ)-vertex is derived for momentum transfers q 2 = 0.2 − 2.34 (GeV/ c ) 2 ard found to decrease more rapidly with q 2 than the proton form factors.

1 data table match query

Axis error includes +- 0.0/0.0 contribution.


Inelastic electron proton scattering at small four-momentum transfers as a test of finite-energy sum rules

Moritz, J. ; Schmidt, K.H. ; Wegener, D. ; et al.
Nucl.Phys.B 41 (1972) 336-352, 1972.
Inspire Record 75163 DOI 10.17182/hepdata.45250

The twofold differential cross section for the inelastic scattering of electrons on protons wa was measured as a function of the scattered electron energy for an electron scattering angle of 12°. The kinematic region covered in this experiment was 0.3 (GeV/ c ) 2 < q 2 < 1.0 (GeV/ c ) 2 and W < 2.9 GeV. The Bloom-Gilman as well as the constant scattering angle sum rule of Rittenberg and Rubinstein were tested.

5 data tables match query

Axis error includes +- 0.0/0.0 contribution (3.7 TO 5////UNCERTAINTIES IN TARGET DENSITY, TARGET DIAMETER, SOLID ANGLE, E- SCATTERING ANGLE, INCIDENT E- ENERGY, DEAD TIME CORRECTIONS, CONSTANT OF FARADAY-CUP INTEGRATOR EFFICIENCY OF SPARK CHAMBERS, RADIATIVE CORRECTIONS).

Axis error includes +- 0.0/0.0 contribution (3.7 TO 5////UNCERTAINTIES IN TARGET DENSITY, TARGET DIAMETER, SOLID ANGLE, E- SCATTERING ANGLE, INCIDENT E- ENERGY, DEAD TIME CORRECTIONS, CONSTANT OF FARADAY-CUP INTEGRATOR EFFICIENCY OF SPARK CHAMBERS, RADIATIVE CORRECTIONS).

Axis error includes +- 0.0/0.0 contribution (3.7 TO 5////UNCERTAINTIES IN TARGET DENSITY, TARGET DIAMETER, SOLID ANGLE, E- SCATTERING ANGLE, INCIDENT E- ENERGY, DEAD TIME CORRECTIONS, CONSTANT OF FARADAY-CUP INTEGRATOR EFFICIENCY OF SPARK CHAMBERS, RADIATIVE CORRECTIONS).

More…

Inelastic electron - proton scattering at fixed four momentum transfer of 0.773-GeV/c**2 and 1.935-GeV/c**2

Albrecht, W. ; Brasse, F.W. ; Dorner, H. ; et al.
DESY-69-7, 1969.
Inspire Record 56612 DOI 10.17182/hepdata.45281

None

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Electroproduction of $\rho^0$ Mesons

Cohen, I. ; Erickson, R. ; Messing, F. ; et al.
Phys.Rev.D 25 (1982) 634, 1982.
Inspire Record 152921 DOI 10.17182/hepdata.47139

Cross sections for ρ0 electroproduction measured in a streamer-chamber experiment are separated into elastic (ep→epρ0) and inelastic production channels. For the elastic channel, the total cross section and t dependence are presented. For the inelastic channel (1σ)dσdz, (1σ)dσdpT2, and a density matrix element are shown and compared to quark-parton-model predictions. The ratio of ρ0 to direct π0 production is found to be 2.0±0.5±0.3, where the first error is statistical, and the second error is systematic.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of $\nu$ and $\bar{\nu}$ structure functions in hydrogen and iron

Abramowicz, H. ; Hansl-Kozanecka, T. ; May, J. ; et al.
Z.Phys.C 25 (1984) 29-43, 1984.
Inspire Record 201386 DOI 10.17182/hepdata.49653

The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

The proton and deuteron F_2 structure function at low Q^2

Tvaskis, V. ; Arrington, J. ; Asaturyan, R. ; et al.
Phys.Rev.C 81 (2010) 055207, 2010.
Inspire Record 844968 DOI 10.17182/hepdata.56742

Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.

62 data tables match query

Proton and Deuteron F2 structure function for an x value of 0.040, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.060, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

Proton and Deuteron F2 structure function for an x value of 0.080, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.

More…