$^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ production in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 754 (2016) 360-372, 2016.
Inspire Record 1380234 DOI 10.17182/hepdata.70861

The production of the hypertriton nuclei $^{3}_{\Lambda}\mathrm H$ and $^{3}_{\bar{\Lambda}} \overline{\mathrm H}$ has been measured for the first time in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV with the ALICE experiment at LHC energies. The total yield, d$N$/d$y$ $\times \mathrm{B.R.}_{\left( ^{3}_{\Lambda}\mathrm H \rightarrow ^{3}\mathrm{He},\pi^{-} \right)} = \left( 3.86 \pm 0.77 (\mathrm{stat.}) \pm 0.68 (\mathrm{syst.})\right) \times 10^{-5}$ in the 0-10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter $B_3$ shows a dependence on the transverse momentum, similar to the $B_2$ of deuterons and the $B_3$ of $^{3}\mathrm{He}$ nuclei. The ratio of yields $S_3$ = $^{3}_{\Lambda}\mathrm H$/($^{3}\mathrm{He}$ $\times \Lambda/\mathrm{p}$) was measured to be $S_3$ = 0.60 $\pm$ 0.13 (stat.) $\pm$ 0.21 (syst.) in 0-10% centrality events; this value is compared to different theoretical models. The measured $S_3$ is fully compatible with thermal model predictions. The measured $^{3}_{\Lambda}\mathrm H$ lifetime, $ \tau = 181^{+54}_{-39} (\mathrm{stat.}) \pm 33 (\mathrm{syst.})\ \mathrm{ps}$ is compatible within 1$\sigma$ with the world average value.

0 data tables match query

Version 3
A search for $B-L$ $R$-parity-violating top squarks in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 97 (2018) 032003, 2018.
Inspire Record 1630899 DOI 10.17182/hepdata.78376

A search is presented for the direct pair production of the stop, the supersymmetric partner of the top quark, that decays through an $R$-parity-violating coupling to a final state with two leptons and two jets, at least one of which is identified as a $b$-jet. The dataset corresponds to an integrated luminosity of 36.1 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, collected in 2015 and 2016 by the ATLAS detector at the LHC. No significant excess is observed over the Standard Model background, and exclusion limits are set on stop pair production at a 95% confidence level. Lower limits on the stop mass are set between 600 GeV and 1.5 TeV for branching ratios above 10% for decays to an electron or muon and a $b$-quark.

0 data tables match query

A search for $t\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2015) 148, 2015.
Inspire Record 1373299 DOI 10.17182/hepdata.70548

A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ of proton-proton collision data collected at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The lepton-plus-jets final state is used, where the top pair decays to $W^+bW^-\bar{b}$, with one $W$ boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow $Z'$ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour $Z'$ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with $\Gamma/m =$ 15% decaying to $t\bar{t}$. These range from 2.5 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

7 data tables match query

Limits on the production cross-section x branching ratio to tt final states as a function of the mass of Z'TC2.

Limits on the production cross-section x branching ratio to tt final states as a function of the mass of bulk RS KK graviton.

Limits on the production cross-section x branching ratio to tt final states as a function of the mass of bulk RS KK gluon.

More…

A search for an unexpected asymmetry in the production of $e^+ \mu^-$ and $e^- \mu^+$ pairs in proton-proton collisions recorded by the ATLAS detector at $\sqrt s = 13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Lett.B 830 (2022) 137106, 2022.
Inspire Record 1990948 DOI 10.17182/hepdata.115579

This search, a type not previously performed at ATLAS, uses a comparison of the production cross sections for $e^+ \mu^-$ and $e^- \mu^+$ pairs to constrain physics processes beyond the Standard Model. It uses $139 \text{fb}^{-1}$ of proton$-$proton collision data recorded at $\sqrt{s} = 13$ TeV at the LHC. Targeting sources of new physics which prefer final states containing $e^{+}\mu^{-}$ to $e^{-}\mu^{+}$, the search contains two broad signal regions which are used to provide model-independent constraints on the ratio of cross sections at the 2% level. The search also has two special selections targeting supersymmetric models and leptoquark signatures. Observations using one of these selections are able to exclude, at 95% confidence level, singly produced smuons with masses up to 640 GeV in a model in which the only other light sparticle is a neutralino when the $R$-parity-violating coupling $\lambda'_{231}$ is close to unity. Observations using the other selection exclude scalar leptoquarks with masses below 1880 GeV when $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=1$, at 95% confidence level. The limit on the coupling reduces to $g_{\text{1R}}^{eu}=g_{\text{1R}}^{\mu c}=0.46$ for a mass of 1420 GeV.

0 data tables match query

A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-B2G-20-014, 2024.
Inspire Record 2760468 DOI 10.17182/hepdata.145997

A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H $to$ bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$^{-1}$ collected in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B $\to$ bH and 100% B $\to$ bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

4 data tables match query

The limit at 95% CL on the cross section for VLQ pair production for the branching fraction hypothesis 0% $\mathcal{B}(B \to bH)$, 100% $\mathcal{B}(B \to bH)$, and 0% $\mathcal{B}(B \to bH)$

The limit at 95% CL on the cross section for VLQ pair production for the branching fraction hypothesis 25% $\mathcal{B}(B \to bH)$, 25% $\mathcal{B}(B \to bH)$, and 50% $\mathcal{B}(B \to bH)$

The limit at 95% CL on the cross section for VLQ pair production for the branching fraction hypothesis 50% $\mathcal{B}(B \to bH)$, 50% $\mathcal{B}(B \to bH)$, and 0% $\mathcal{B}(B \to bH)$

More…

A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 112004, 2020.
Inspire Record 1812970 DOI 10.17182/hepdata.99690

A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.

3 data tables match query

The 95% confidence limit on the cross section for VLQ pair production as a function of VLQ mass for three branching fraction hypotheses: B( B -> bH ) = 100% (upper left), B( B -> bZ ) = 100% (upper right), and and B( B -> bH ) = B( B -> bZ ) = 50% (lower). The solid black line indicates the observed limit and the dashed line indicates the expected limit with 1 sigma (green band) and 2 sigma (yellow band) uncertainties. The theoretical cross section and its uncertainty are shown as the red line and pale red band.

The 95% confidence limit on the cross section for VLQ pair production as a function of VLQ mass for three branching fraction hypotheses: B( B -> bH ) = 100% (upper left), B( B -> bZ ) = 100% (upper right), and and B( B -> bH ) = B( B -> bZ ) = 50% (lower). The solid black line indicates the observed limit and the dashed line indicates the expected limit with 1 sigma (green band) and 2 sigma (yellow band) uncertainties. The theoretical cross section and its uncertainty are shown as the red line and pale red band.

The 95% confidence limit on the cross section for VLQ pair production as a function of VLQ mass for three branching fraction hypotheses: B( B -> bH ) = 100% (upper left), B( B -> bZ ) = 100% (upper right), and and B( B -> bH ) = B( B -> bZ ) = 50% (lower). The solid black line indicates the observed limit and the dashed line indicates the expected limit with 1 sigma (green band) and 2 sigma (yellow band) uncertainties. The theoretical cross section and its uncertainty are shown as the red line and pale red band.


Version 3
A search for high-mass resonances decaying to $\tau\nu$ in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 120 (2018) 161802, 2018.
Inspire Record 1649273 DOI 10.17182/hepdata.80812

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s}$ = 13 TeV produced by the Large Hadron Collider is presented. Only $\tau$-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy $W^{\prime}$ bosons with masses less than 3.7 TeV in the Sequential Standard Model and masses less than 2.2-3.8 TeV depending on the coupling in the non-universal G(221) model are excluded at the 95% credibility level.

6 data tables match query

Number of expected Standard Model background events including total statistical and systematic uncertainty added in quadrature (calculated before applying the statistical fitting procedure), number of observed events, and the observed and expected 95% CL upper limits on the visible $\tau\nu$ production cross section, $\sigma_{\rm vis} = \sigma(pp \to \tau\nu +X) \cdot \mathcal{A} \cdot \varepsilon$, for $m_{\rm T}$ thresholds ranging from 250 to 1800 GeV. See HepData abstract for details on how to use this data for reinterpretation.

Number of expected Standard Model background events including total statistical and systematic uncertainty added in quadrature (calculated before applying the statistical fitting procedure), number of observed events, and the observed and expected 95% CL upper limits on the visible $\tau\nu$ production cross section, $\sigma_{\rm vis} = \sigma(pp \to \tau\nu +X) \cdot \mathcal{A} \cdot \varepsilon$, for $m_{\rm T}$ thresholds ranging from 250 to 1800 GeV. See HepData abstract for details on how to use this data for reinterpretation.

Number of expected Standard Model background events including total statistical and systematic uncertainty added in quadrature (calculated before applying the statistical fitting procedure), number of observed events, and the observed and expected 95% CL upper limits on the visible $\tau\nu$ production cross section, $\sigma_{\rm vis} = \sigma(pp \to \tau\nu +X) \cdot \mathcal{A} \cdot \varepsilon$, for $m_{\rm T}$ thresholds ranging from 250 to 1800 GeV. See HepData abstract for details on how to use this data for reinterpretation.

More…

A search for high-mass resonances decaying to $\tau^{+}\tau^{-}$ in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 07 (2015) 157, 2015.
Inspire Record 1346398 DOI 10.17182/hepdata.68362

A search for high-mass resonances decaying into $\tau^{+}\tau^{-}$ final states using proton-proton collisions at $\sqrt{s}= 8$ TeV produced by the Large Hadron Collider is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 19.5-20.3 fb$^{-1}$. No statistically significant excess above the Standard Model expectation is observed; 95% credibility upper limits are set on the cross section times branching fraction of $Z^{\prime}$ resonances decaying into $\tau^+\tau^-$ pairs as a function of the resonance mass. As a result, $Z^{\prime}$ bosons of the Sequential Standard Model with masses less than 2.02 TeV are excluded at 95% credibility. The impact of the fermionic couplings on the $Z^{\prime}$ acceptance is investigated and limits are also placed on a $Z^{\prime}$ model that exhibits enhanced couplings to third-generation fermions.

9 data tables match query

Signal acceptance times efficiency (ACC*EFF) for Z'L, Z'R, Z'narrow and Z'wide divided by ACC*EFF for Z'SSM as a function of the Z' mass, separately for the had-had and lep-had channels.

Ratio of the Z'NU to Z'SSM cross section times tau+tau- branching fraction (SIG*BR) as a function of sin^2phi and the Z' mass.

Ratio of the Z'NU to Z'SSM acceptance times efficiency (ACC*EFF) in the had-had channel as a function of sin^2phi and the Z' mass.

More…

A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

The CMS & TOTEM collaborations Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 827, 2023.
Inspire Record 2639338 DOI 10.17182/hepdata.135797

A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp $\to$ pp + Z/$\gamma$ + X, in proton-tagged events from proton-proton collisions at $\sqrt{s}$ = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp $\to$ pp + Z/$\gamma$ + X are set.

12 data tables match query

$m_{miss}$ distributions in the $pp\rightarrow ppZeeX$, with the protons reconstructed with the multi(+z)-multi(-z)method. The background distributions are shown after the fit. The expectations for a signal with $m_{X} = 1000$ GeV are superimposed, where the fiducial production cross section is normalised to 1 pb.

$m_{miss}$ distributions in the $pp\rightarrow ppZeeX$, with the protons reconstructed with the multi(+z)-single(-z)method. The background distributions are shown after the fit. The expectations for a signal with $m_{X} = 1000$ GeV are superimposed, where the fiducial production cross section is normalised to 1 pb.

$m_{miss}$ distributions in the $pp\rightarrow ppZeeX$, with the protons reconstructed with the single(+z)-multi(-z)method. The background distributions are shown after the fit. The expectations for a signal with $m_{X} = 1000$ GeV are superimposed, where the fiducial production cross section is normalised to 1 pb.

More…

A search for pair-produced resonances in four-jet final states at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 250, 2018.
Inspire Record 1631641 DOI 10.17182/hepdata.79059

A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb$^{-1}$ of $\sqrt{s}=$ 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, $\tilde{t}$, which decays promptly into two quarks through $R$-parity-violating couplings. Top squarks with masses in the range 100 GeV < $m_{\tilde{t}}$ < 410 GeV are excluded at 95% confidence level. If the decay is into a $b$-quark and a light quark, a dedicated selection requiring two $b$-tags is used to exclude masses in the ranges 100 GeV < $m_{\tilde{t}}$ < 470 GeV and 480 GeV < $m_{\tilde{t}}$ < 610 GeV. Additional limits are set on the pair-production of massive colour-octet resonances.

0 data tables match query