Version 4
Search for Higgs boson pair production in the two bottom quarks plus two photons final state in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 106 (2022) 052001, 2022.
Inspire Record 1995886 DOI 10.17182/hepdata.105864

Searches are performed for nonresonant and resonant di-Higgs boson production in the $b\bar{b}\gamma\gamma$ final state. The data set used corresponds to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is set on $pp \rightarrow HH$ nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding $pp \rightarrow HH$ production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier $\kappa_{\lambda}$ are determined to be $[-1.5, 6.7]$ $([-2.4, 7.7])$ at 95% confidence level, where the expected constraints on $\kappa_{\lambda}$ are obtained excluding $pp \rightarrow HH$ production from the background hypothesis. For resonant production of a new hypothetical scalar particle $X$ ($X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$), limits on the cross section for $pp \to X \to HH$ are presented in the narrow-width approximation as a function of $m_{X}$ in the range $251 \leq m_{X} \leq 1000$ GeV. The observed (expected) limits on the cross section for $pp \to X \to HH$ range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.

4 data tables match query

Breakdown of the dominant systematic uncertainties. The impact of the uncertainties is defined according to the statistical analysis described in Section 7. It corresponds to the relative variation of the expected upper limit on the cross section when re-evaluating the profile likelihood ratio after fixing the nuisance parameter in question to its best-fit value, while all remaining nuisance parameters remain free to float. The impact is shown in %. Only systematic uncertainties with an impact of at least 0.2% are shown. Uncertainties of the "Norm. + Shape" type affect both the normalization and the parameters of the functional form. The rest of the uncertainties affect only the yields.

Breakdown of the dominant systematic uncertainties. The impact of the uncertainties is defined according to the statistical analysis described in Section 7. It corresponds to the relative variation of the expected upper limit on the cross section when re-evaluating the profile likelihood ratio after fixing the nuisance parameter in question to its best-fit value, while all remaining nuisance parameters remain free to float. The impact is shown in %. Only systematic uncertainties with an impact of at least 0.2% are shown. Uncertainties of the "Norm. + Shape" type affect both the normalization and the parameters of the functional form. The rest of the uncertainties affect only the yields.

Breakdown of the dominant systematic uncertainties. The impact of the uncertainties is defined according to the statistical analysis described in Section 7. It corresponds to the relative variation of the expected upper limit on the cross section when re-evaluating the profile likelihood ratio after fixing the nuisance parameter in question to its best-fit value, while all remaining nuisance parameters remain free to float. The impact is shown in %. Only systematic uncertainties with an impact of at least 0.2% are shown. Uncertainties of the "Norm. + Shape" type affect both the normalization and the parameters of the functional form. The rest of the uncertainties affect only the yields.

More…