Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at $\sqrt{s} = $ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 081801, 2018.
Inspire Record 1624170 DOI 10.17182/hepdata.81935

The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading-order is 0.90 $\pm$ 0.22. A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-eight effective field theory operators and on the production of doubly charged Higgs bosons.

6 data tables match query

The measured W+W+ EWK fiducual cross section.

Data and estimated signal and background yields after the selection in the two dimensional dijet-dilepton mass distributions. This is used for the standard model measurements.

Data and estimated signal and background yields after the selection in the one dimensional dilepton mass distribution. This is used for the evaluation of the anomalous coupling limits.

More…

Angular analysis of the decay B$^+$$\to$ K$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 98 (2018) 112011, 2018.
Inspire Record 1676212 DOI 10.17182/hepdata.85741

The angular distribution of the flavor-changing neutral current decay B$^+$$\to$ K$^+\mu^+\mu^-$ is studied in proton-proton collisions at a center-of-mass energy of 8 TeV. The analysis is based on data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5 fb$^{-1}$. The forward-backward asymmetry $A_{\mathrm{FB}}$ of the dimuon system and the contribution $F_{\mathrm{H}}$ from the pseudoscalar, scalar, and tensor amplitudes to the decay width are measured as a function of the dimuon mass squared. The measurements are consistent with the standard model expectations.

3 data tables match query

Figure 5a. Results of the $A_{FB}$ measurements in ranges of q2. 0 ≤ $F_{H}$ ≤ 3 and |$A_{FB}$| ≤ min(1, $F_{H}$/2).

Figure 5b. Results of the $F_{H}$ measurements in ranges of q2. 0 ≤ $F_{H}$ ≤ 3 and |$A_{FB}$| ≤ min(1, $F_{H}$/2).

Table 2. Results of the fit for each q2 range, together with several SM predictions. The inclusive $q^{2}$ = 1.00–22.00 $GeV^{2}$ range in the bottom line does not include events from the J/ψ and ψ(2S) resonance regions.


Search for the Chiral Magnetic Effect in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV with the STAR forward Event Plane Detectors

The STAR collaboration Aboona, Bassam ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Lett.B 839 (2023) 137779, 2023.
Inspire Record 2148920 DOI 10.17182/hepdata.133216

A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity $|\eta|<1.0$ and at forward rapidity $2.1 < |\eta|<5.1$. We compare the results based on the directed flow plane ($\Psi_1$) at forward rapidity and the elliptic flow plane ($\Psi_2$) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to $\Psi_1$ than to $\Psi_2$, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.

0 data tables match query

Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in $pp$ collisions at sqrt(s)=13 TeV

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 121 (2018) 081801, 2018.
Inspire Record 1667040 DOI 10.17182/hepdata.84597

Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large Hadron Collider can be statistically limited by the bandwidth available to inclusive single-jet triggers, whose data-collection rates at low transverse momentum are much lower than the rate from Standard Model multijet production. This Letter describes a new search for dijet resonances where this limitation is overcome by recording only the event information calculated by the jet trigger algorithms, thereby allowing much higher event rates with reduced storage needs. The search targets low-mass dijet resonances in the range 450-1800 GeV. The analyzed dataset has an integrated luminosity of up to 29.3 fb$^{-1}$ and was recorded at a center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped contributions to the dijet mass distribution from new particles and on a model of dark-matter particles with axial-vector couplings to quarks.

6 data tables match query

Data, estimated background and uncertainties, in the region defined by |y*|<0.3.

Data, estimated background and uncertainties, in the region defined by |y*|<0.6.

Observed 95% CL limit on cross section times acceptance times branching ratio for each width and mass of Gaussian signal shape tested, in the region defined by |y*|<0.3.

More…

Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 105 (2022) 014901, 2022.
Inspire Record 1914564 DOI 10.17182/hepdata.115993

The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

0 data tables match query

Version 2
Reaction plane correlated triangular flow in Au+Au collisions at $\mathbf{\sqrt{s_{\textrm{NN}}}=3}$ GeV

The STAR Collaboration 19 & STAR collaborations Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 109 (2024) 044914, 2024.
Inspire Record 2702151 DOI 10.17182/hepdata.144480

We measure triangular flow relative to the reaction plane at 3 GeV center-of-mass energy in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. A significant $v_3$ signal for protons is observed, which increases for higher rapidity, higher transverse momentum, and more peripheral collisions. The triangular flow is essentially rapidity-odd with a slope at mid-rapidity, $dv_3/dy|_{(y=0)}$, opposite in sign compared to the slope for directed flow. No significant $v_3$ signal is observed for charged pions and kaons. Comparisons with models suggest that a mean field potential is required to describe these results, and that the triangular shape of the participant nucleons is the result of stopping and nuclear geometry.

0 data tables match query

Measurement of Groomed Jet Substructure Observables in \pp Collisions at $\sqrt{s} = 200$ GeV with STAR

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Lett.B 811 (2020) 135846, 2020.
Inspire Record 1783875 DOI 10.17182/hepdata.93789

In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.

0 data tables match query

The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

The COMPASS collaboration Alexeev, M.G. ; Alexeev, G.D. ; Amoroso, A. ; et al.
Phys.Rev.D 105 (2022) 012005, 2022.
Inspire Record 1898933 DOI 10.17182/hepdata.114098

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

4 data tables match query

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

More…

Investigation of the Angular Dependence of the Cross Section for Photoproduction of Pions on Nucleons

Adamovich, M.I. ; Larionova, V.G. ; Latypova, R.A. ; et al.
Sov.Phys.JETP 26 344-349, 2015.
Inspire Record 1387574 DOI 10.17182/hepdata.17060

The differential cross sections for they+ p-- n + 7T+ process were measured for y-quantum energies 200, 205 and 210 MeV and meson emission angles 16, 24, 36, 44, 56, 64, 76, 84, 96, 104, 116, 124, 136, 144 and 156° relative to the photon beam in the laboratory system. A phenomenological analysis of the results is carried out and some multipole charged-meson photoproduction amplitudes are determined. The results are compared with the predictions of the dispersion-relation theory.

0 data tables match query

Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the STAR Experiment

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 024908, 2023.
Inspire Record 2631860 DOI 10.17182/hepdata.134023

We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.

5 data tables match query

Main contributors to systematic uncertainty to the proton cumulant ratios: $C_2/C_1$, $C_3/C_2$,and $C_4/C_2$ from 0–5% central 3 GeV Au+Au collisions. The first row shows the values and statistical uncertainties of those ratios. The corresponding values of these ratios along with the statistical uncertainties are listed in the table. The final total value is the quadratic sum of uncertainties from centrality, pileup, and the dominant contribution from TPC hits, DCA, TOF $m^2$, and detector efficiency. Clearly, this analysis is systematically dominant.

The transverse-momentum and rapidity dependence of cumulant ratios of proton multiplicity distributions for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. In the left column, the $p_{\rm T}$ analysis window is $0.4<p_{\rm T}<2.0$ GeV/$c$ while the rapidity window is varied in the range $y_{\rm min}<y<0$. In the right column, the rapidit$y$ analysis window is $−0.5<y<0$ while the $p_{\rm T}$ is varied in the range $0.4<p_{\rm T}<p_{\rm T}^{\rm max}$ GeV/$c$. The most central (0–5%) and peripheral (50–60%) events are depicted by black squares and blue triangles, respectively. Statistical and systematic uncertainties are represented by black and gray bars, respectively. UrQMD simulations for the top 0–5% and 50–60% are shown by gold and blue bands, respectively.

The transverse-momentum and rapidity dependence of cumulant ratios of proton multiplicity distributions for Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV. In the left column, the $p_{\rm T}$ analysis window is $0.4<p_{\rm T}<2.0$ GeV/$c$ while the rapidity window is varied in the range $y_{\rm min}<y<0$. In the right column, the rapidit$y$ analysis window is $−0.5<y<0$ while the $p_{\rm T}$ is varied in the range $0.4<p_{\rm T}<p_{\rm T}^{\rm max}$ GeV/$c$. The most central (0–5%) and peripheral (50–60%) events are depicted by black squares and blue triangles, respectively. Statistical and systematic uncertainties are represented by black and gray bars, respectively. UrQMD simulations for the top 0–5% and 50–60% are shown by gold and blue bands, respectively.

More…