Evidence for WW production from double-parton interactions in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 80 (2020) 41, 2020.
Inspire Record 1753976 DOI 10.17182/hepdata.90950

A search for WW production from double-parton scattering processes using same-charge electron-muon and dimuon events is reported, based on proton-proton collision data collected at a center-of-mass energy of 13 TeV. The analyzed data set corresponds to an integrated luminosity of 77.4 fb$^{-1}$, collected using the CMS detector at the LHC in 2016 and 2017. Multivariate classifiers are used to discriminate between the signal and the dominant background processes. A maximum likelihood fit is performed to extract the signal cross section. This leads to the first evidence for WW production via double-parton scattering, with a significance of 3.9 standard deviations. The measured inclusive cross section is 1.41 $\pm$ 0.28 (stat) $\pm$ 0.28 (syst) pb.

0 data tables match query

Measurement of the top quark mass in the all-jets final state at $\sqrt{s}=$ 13 TeV and combination with the lepton+jets channel

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 313, 2019.
Inspire Record 1711672 DOI 10.17182/hepdata.89051

A top quark mass measurement is performed using 35.9 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s} =$ 13 TeV. The measurement uses the $\mathrm{t\overline{t}}$ all-jets final state. A kinematic fit is performed to reconstruct the decay of the $\mathrm{t\overline{t}}$ system and suppress the multijet background. Using the ideogram method, the top quark mass ($m_\mathrm{t}$) is determined, simultaneously constraining an additional jet energy scale factor (JSF). The resulting value of $m_\mathrm{t}$ = 172.34 $\pm$ 0.20 (stat+JSF) $\pm$ 0.70 (syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the $\mathrm{t\overline{t}}$ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an $m_\mathrm{t}$ measurement of 172.26 $\pm$ 0.07 (stat+JSF) $\pm$ 0.61 (syst) GeV. This is the first combined $m_\mathrm{t}$ extraction from the lepton+jets and all-jets channels through a single likelihood function.

0 data tables match query

Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks

The CMS collaboration
CMS-B2G-22-003, 2022.
Inspire Record 2081829 DOI 10.17182/hepdata.128973

A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb$^{-1}$ collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, $\kappa_{2V}$, excluding $\kappa_{2V}$ = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.

0 data tables match query

Version 2
Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-EXO-23-014, 2024.
Inspire Record 2760892 DOI 10.17182/hepdata.146759

An inclusive search for long-lived exotic particles (LLPs) decaying to final states with a pair of muons is presented. The search uses data corresponding to an integrated luminosity of 36.6 fb$^{-1}$ collected by the CMS experiment from the proton-proton collisions at $\sqrt{s}$ = 13.6 TeV in 2022, the first year of Run 3 of the CERN LHC. The experimental signature is a pair of oppositely charged muons originating from a common vertex spatially separated from the proton-proton interaction point by distances ranging from several hundred $\mu$m to several meters. The sensitivity of the search benefits from new triggers for displaced dimuons developed for Run 3. The results are interpreted in the framework of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons, and of an $R$-parity violating supersymmetry model, in which long-lived neutralinos decay to a pair of muons and a neutrino. The limits set on these models are the most stringent to date in wide regions of lifetimes for LLPs with masses larger than 10 GeV.

7 data tables match query

Overall efficiencies in the STA-STA (green) and TMS-TMS (red) dimuon categories, as well as their combination (black) as a function of $c\tau$ for the HAHM signal events with $m(Z_D) = 20\ GeV$. The solid curves show efficiencies achieved with the 2022 Run 3 triggers, whereas dashed curves show efficiencies for the subset of events selected by the triggers used in the 2018 Run 2 analysis. The efficiency is defined as the fraction of signal events that satisfy the criteria of the indicated trigger as well as the full set of offline selection criteria. The lower panel shows the relative improvement of the overall signal efficiency brought in by improvements in the trigger.

The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 10\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.

The 95% CL upper limits on $B(H \rightarrow Z_DZ_D)$ as a function of $c\tau(Z_D)$ in the HAHM model, for $m(Z_D) = 20\ GeV$, obtained in this analysis, the Run 2 analysis, and their combination. The observed limits in this analysis and in the Run 2 analysis are shown as blue and red curves, respectively; the median combined expected limits are shown as dashed black curves; and the combined observed limits are shown as solid black curves. The green and yellow bands correspond, respectively, to the 68 and 95% quantiles for the combined expected limits.

More…

Measurement of inclusive jet cross-sections in pp and PbPb collisions at sqrt(s[NN])=2.76 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.C 96 (2017) 015202, 2017.
Inspire Record 1487278 DOI 10.17182/hepdata.77601

Inclusive jet spectra from pp and PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV, collected with the CMS detector at the LHC, are presented. Jets are reconstructed with three different distance parameters (R = 0.2, 0.3, and 0.4) for transverse momentum (pT) greater than 70 GeV and pseudorapidity abs(eta) < 2. Next-to-leading-order quantum chromodynamic calculations with non-perturbative corrections are found to over-predict jet production cross sections in pp for small distance parameters. The jet nuclear modification factors for PbPb compared to pp collisions, show a steady decrease from peripheral to central events, along with a weak dependence on the jet pT. They are found to be independent of the distance parameter in the measured kinematic range.

0 data tables match query

Observation of the J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-006, 2024.
Inspire Record 2769595 DOI 10.17182/hepdata.147273

The J/$\psi$$\to$$\mu^+\mu^-\mu^+\mu^-$ decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb${-1}$. Normalizing to the J/$\psi$$\to$$\mu^+\mu^-$ decay mode leads to a branching fraction [10.1$^{+3.3}_{-2.7}$ (stat) $\pm$ 0.4 (syst) ]$\times$ 10$^{-7}$, a value that is consistent with the standard model prediction.

0 data tables match query

Identification of hadronic tau lepton decays using a deep neural network

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JINST 17 (2022) P07023, 2022.
Inspire Record 2016054 DOI 10.17182/hepdata.116281

A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons ($\tau_\mathrm{h}$) that originate from genuine tau leptons in the CMS detector against $\tau_\mathrm{h}$ candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a $\tau_\mathrm{h}$ candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine $\tau_\mathrm{h}$ to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient $\tau_\mathrm{h}$ reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved $\tau_\mathrm{h}$ reconstruction method are validated with LHC proton-proton collision data at $\sqrt{s} =$ 13 TeV.

0 data tables match query

Version 3
Search for long-lived particles decaying to jets with displaced vertices in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, A. ; Adam, W. ; et al.
Phys.Rev.D 104 (2021) 052011, 2021.
Inspire Record 1861146 DOI 10.17182/hepdata.102798

A search is presented for long-lived particles produced in pairs in proton-proton collisions at the LHC operating at a center-of-mass energy of 13 TeV. The data were collected with the CMS detector during the period from 2015 through 2018, and correspond to a total integrated luminosity of 140 fb$^{-1}$. This search targets pairs of long-lived particles with mean proper decay lengths between 0.1 and 100 mm, each of which decays into at least two quarks that hadronize to jets, resulting in a final state with two displaced vertices. No significant excess of events with two displaced vertices is observed. In the context of $R$-parity violating supersymmetry models, the pair production of long-lived neutralinos, gluinos, and top squarks is excluded at 95% confidence level for cross sections larger than 0.08 fb, masses between 800 and 3000 GeV, and mean proper decay lengths between 1 and 25 mm.

0 data tables match query

Observation of the $\Lambda_\text{b}^0$$\to$ J/$\psi\Xi^-$K$^+$ decay

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-22-002, 2024.
Inspire Record 2752469 DOI 10.17182/hepdata.145642

Using proton-proton collision data corresponding to an integrated luminosity of 140 fb$^{-1}$ collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, the $\Lambda_\text{b}^0$$\to$ J/$\psi\Xi^-$K$^+$ decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the $\Lambda_\text{b}^0$$\to$$\psi$(2S)$\Lambda$ decay, is measured to be $\mathcal{B}$($\Lambda_\text{b}^0$$\to$ J/$\psi\Xi^-$K$^+$)/$\mathcal{B}$( $\Lambda_\text{b}^0$$\to$$\psi$(2S)$\Lambda$) = [3.38 $\pm$ 1.02 $\pm$ 0.61 $\pm$ 0.03]%, where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in $\mathcal{B}$($\psi$(2S) $\to$ J/$\psi\pi^+\pi^-$) and $\mathcal{B}$($\Xi^-$ $\to$ $\Lambda\pi^-$).

0 data tables match query

Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2019) 082, 2019.
Inspire Record 1697570 DOI 10.17182/hepdata.85767

A search for the pair production of heavy fermionic partners of the top quark with charge 5/3 (X$_{5/3}$) is performed in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The X$_{5/3}$ quark is assumed always to decay into a top quark and a W boson. Both the right-handed and left-handed X$_{5/3}$ couplings to the W boson are considered. Final states with either a pair of same-sign leptons or a single lepton are studied. No significant excess of events is observed above the expected standard model background. Lower limits at 95% confidence level on the X$_{5/3}$ quark mass are set at 1.33 and 1.30 TeV respectively for the case of right-handed and left-handed couplings to W bosons in a combination of the same-sign dilepton and single-lepton final states.

1 data table match query

Summary of yields from simulated prompt same-sign dilepton (SSP MC), same-sign nonprompt (Nonprompt), and opposite-sign prompt (ChargeMisID) backgrounds after the full analysis selection. Also shown are the number of expected events for an RH $X_{5/3}$ particle with a mass of 1 TeV. The uncertainties include both statistical and all systematic components (as described in Section 8). The number of events and uncertainties correspond to the background- only fit to data for the background, while for the signal they are based on the yields before the fit to data.