Jet structure from dihadron correlations in d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 73 (2006) 054903, 2006.
Inspire Record 694429 DOI 10.17182/hepdata.151167

Dihadron correlations at high transverse momentum in d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). From these correlations we extract several structural characteristics of jets; the root-mean-squared (RMS) transverse momentum of fragmenting hadrons with respect to the jet sqrt(<j_T^2>), the mean sine-squared angle between the scattered partons <sin^2(phi_jj)>, and the number of particles produced within the dijet that are associated with a high-p_T particle (dN/dx_E distributions). We observe that the fragmentation characteristics of jets in d+Au collisions are very similar to those in p+p collisions and that there is also little dependence on the centrality of the d+Au collision. This is consistent with the nuclear medium having little influence on the fragmentation process. Furthermore, there is no statistically significant increase in the value of <sin^2(phi_jj)> from p+p to d+Au collisions. This constrains the amount of multiple scattering that partons undergo in the cold nuclear medium before and after a hard-collision.

0 data tables match query

Estimate of Background Baseline and Upper Limit on the Chiral Magnetic Effect in Isobar Collisions at $\sqrt{s_{\text{NN}}}=200$ GeV at the Relativistic Heavy-Ion Collider

The STAR collaboration
2023.
Inspire Record 2713075 DOI 10.17182/hepdata.145133

For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator ($\Delta\gamma$), normalized by elliptic anisotropy ($v_{2}$), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, $Y = \frac{(\Delta\gamma/v_{2})^{\text{Ru}}}{(\Delta\gamma/v_{2})^{\text{Zr}}}$, is naively expected to be $\frac{(1/N)^{\text{Ru}}}{(1/N)^{\text{Zr}}}$; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to $Y$ from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for $Y$, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the $\Delta\gamma$ measurement of approximately $10\%$ at a $95\%$ confidence level on in isobar collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV.

0 data tables match query

Multi-particle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 99 (2019) 024903, 2019.
Inspire Record 1670164 DOI 10.17182/hepdata.150019

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity $1<|\eta|<3$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$, and triangular flow coefficients $v_3\{2\}$ and $v_3\{4\}$. Using the small-variance limit, we estimate the mean and variance of the event-by-event $v_2$ distribution from $v_2\{2\}$ and $v_2\{4\}$. In a complementary analysis, we also use a folding procedure to study the distributions of $v_2$ and $v_3$ directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final state momentum distributions are discussed.

2 data tables match query

Centrality dependence of $v_3${2, |$\Delta\eta$| > 2} in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, shown as magenta diamonds. The systematic uncertainty is indicated as a shaded magenta band. Also shown as black squares are $\sqrt{\langle v^{2}_{3}\rangle}$ as determined from the folding analysis, which is shown in the next section.

Centrality dependence of $v_3${2, |$\Delta\eta$| > 2} in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, shown as magenta diamonds. The systematic uncertainty is indicated as a shaded magenta band. Also shown as black squares are $\sqrt{\langle v^{2}_{3}\rangle}$ as determined from the folding analysis, which is shown in the next section.


Single identified hadron spectra from s(NN)**1/2 = 130-GeV Au + Au collisions.

The PHENIX collaboration Adcox, K. ; Adler, S.S. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 69 (2004) 024904, 2004.
Inspire Record 623413 DOI 10.17182/hepdata.149578

Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.

0 data tables match query

Measurement of jet production in deep inelastic scattering and NNLO determination of the strong coupling at ZEUS

The ZEUS collaboration Abt, I. ; Aggarwal, R. ; Aushev, V. ; et al.
Eur.Phys.J.C 83 (2023) 1082, 2023.
Inspire Record 2694205 DOI 10.17182/hepdata.145637

A new measurement of inclusive-jet cross sections in the Breit frame in neutral current deep inelastic scattering using the ZEUS detector at the HERA collider is presented. The data were taken in the years 2004 to 2007 at a centre-of-mass energy of $318\,\text{GeV}$ and correspond to an integrated luminosity of $347\,\text{pb}^{-1}$. Massless jets, reconstructed using the $k_t$-algorithm in the Breit reference frame, have been measured as a function of the squared momentum transfer, $Q^2$, and the transverse momentum of the jets in the Breit frame, $p_{\perp,\text{Breit}}$. The measured jet cross sections are compared to previous measurements and to perturbative QCD predictions. The measurement has been used in a next-to-next-to-leading-order QCD analysis to perform a simultaneous determination of parton distribution functions of the proton and the strong coupling, resulting in a value of $\alpha_s(M_Z^2) = 0.1142 \pm 0.0017~\text{(experimental/fit)}$${}^{+0.0006}_{-0.0007}~\text{(model/parameterisation)}$${}^{+0.0006}_{-0.0004}~\text{(scale)}$, whose accuracy is improved compared to similar measurements. In addition, the running of the strong coupling is demonstrated using data obtained at different scales.

0 data tables match query

Detailed measurement of the $e^+ e^-$ pair continuum in $p+p$ and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and implications for direct photon production

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 81 (2010) 034911, 2010.
Inspire Record 838580 DOI 10.17182/hepdata.145190

PHENIX has measured the e^+e^- pair continuum in sqrt(s_NN)=200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e^+e^- yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate mass region, between the masses of the phi and the J/psi meson, the yield is consistent with expectations from correlated c^bar-c production, though other mechanisms are not ruled out. In the low mass region (below the phi) the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7+/-0.4(stat)+/-1.5(syst)+/-0.9(model) At low mass (m_ee<0.3 GeV/c^2) and high p_T (1<p_T<5 GeV/c) an enhanced e^+e^- pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in p_T, with inverse slope T=221+/-19(stat)+/-19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T_init ~=300--600 MeV at times of 0.6--0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low p_T<1 GeV/c the low mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T ~=100 MeV. Theoretical models under predict the low mass, low p_T enhancement.

4 data tables match query

(Color online) Invariant cross section ($p$+$p$) and invariant yield (Au+Au) of direct photons as a function of $p_T$. The filled points are from this analysis and open points are from [81,82]. The three curves on the $p$+$p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p$+$p$ data, scaled by $T_{AA}$. The dashed (black) curves are exponential plus the $T_{AA}$ scaled $p$+$p$ fit.

(Color online) Invariant cross section ($p$+$p$) and invariant yield (Au+Au) of direct photons as a function of $p_T$. The filled points are from this analysis and open points are from [81,82]. The three curves on the $p$+$p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p$+$p$ data, scaled by $T_{AA}$. The dashed (black) curves are exponential plus the $T_{AA}$ scaled $p$+$p$ fit.

(Color online) Invariant cross section ($p$+$p$) and invariant yield (Au+Au) of direct photons as a function of $p_T$. The filled points are from this analysis and open points are from [81,82]. The three curves on the $p$+$p$ data represent NLO pQCD calculations, and the dashed curves show a modified power-law fit to the $p$+$p$ data, scaled by $T_{AA}$. The dashed (black) curves are exponential plus the $T_{AA}$ scaled $p$+$p$ fit.

More…

Inclusive cross section and double-helicity asymmetry for $\pi^{0}$ production at midrapidity in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 93 (2016) 011501, 2016.
Inspire Record 1396712 DOI 10.17182/hepdata.144863

PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $\pi^0$ production at midrapidity from $p$$+$$p$ collisions at $\sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $\pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $\sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $\pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $\Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $x\sim0.01$, and thus provide additional constraints on the value of $\Delta G$. The results confirm the evidence for nonzero $\Delta G$ using a different production channel in a complementary kinematic region.

0 data tables match query

Energy Dependence of Intermittency for Charged Hadrons in Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, Muhammad ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Lett.B 845 (2023) 138165, 2023.
Inspire Record 2626682 DOI 10.17182/hepdata.137849

Density fluctuations near the QCD critical point can be probed via an intermittency analysis in relativistic heavy-ion collisions. We report the first measurement of intermittency in Au$+$Au collisions at $\sqrt{s_\mathrm{_{NN}}}$ = 7.7-200 GeV measured by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The scaled factorial moments of identified charged hadrons are analyzed at mid-rapidity and within the transverse momentum phase space. We observe a power-law behavior of scaled factorial moments in Au$+$Au collisions and a decrease in the extracted scaling exponent ($\nu$) from peripheral to central collisions. The $\nu$ is consistent with a constant for different collisions energies in the mid-central (10-40%) collisions. Moreover, the $\nu$ in the 0-5% most central Au$+$Au collisions exhibits a non-monotonic energy dependence that reaches a possible minimum around $\sqrt{s_\mathrm{_{NN}}}$ = 27 GeV. The physics implications on the QCD phase structure are discussed.

0 data tables match query

Forward $J/\psi$ production in U$+$U collisions at $\sqrt{s_{NN}}$=193 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 93 (2016) 034903, 2016.
Inspire Record 1393789 DOI 10.17182/hepdata.144239

The invariant yields for $J/\psi$ production at forward rapidity $(1.2<|y|<2.2)$ in U$+$U collisions at $\sqrt{s_{_{NN}}}$=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor $R_{AA}$ are presented and compared with those from Au$+$Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U$+$U and Au$+$Au collisions within the same centrality class is presented, and used to investigate the role of $c\bar{c}$ coalescence. Two different parameterizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, $N_{\rm coll}$, and these were found to give significantly different $N_{\rm coll}$ values. Results using $N_{\rm coll}$ values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the $J/\psi$ suppression, relative to binary collision scaling, is similar in U$+$U and Au$+$Au for peripheral and midcentral collisions, but that $J/\psi$ show less suppression for the most central U$+$U collisions. The results are consistent with a picture in which, for central collisions, increase in the $J/\psi$ yield due to $c\bar{c}$ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between $c\bar{c}$ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine $N_{\rm coll}$.

0 data tables match query

Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV with the STAR detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, Jaroslav ; et al.
JHEP 06 (2023) 176, 2023.
Inspire Record 2641480 DOI 10.17182/hepdata.139080

We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity ($|y|<$ 0.7) in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV. Invariant yields of HFEs are measured for the transverse momentum range of $3.5 < p_{\rm T} < 9$ GeV/$c$ in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in $p$+$p$ collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma.

1 data table match query

HFE (electrons from semileptonic decays of heavy-flavor hadrons) $R_{\rm AA}$ (red circles) as a function of $p_{\rm T}$ in different centrality intervals of Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV, compared with STAR (yellow stars) and PHENIX (green squares) published results, and Duke ((modified Langevin transport model, blue line) and PHSD (parton-hadron-string dynamics model, orange line) model calculations. Vertical bars and boxes around data points represent combined statistical and systematic uncertainties from both Au+Au and $p$+$p$ measurements, respectively. Boxes at unity show the global uncertainties, which for this analysis include the 8% global uncertainty on $p$+$p$ reference and the $N_{\rm coll}$ uncertainties. The left box is for PHENIX and the right one for STAR.