Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 04 (2022) 047, 2022.
Inspire Record 1986733 DOI 10.17182/hepdata.114866

A search is presented for a right-handed W boson (W$_\mathrm{R}$) and a heavy neutrino (N), in a final state consisting of two same-flavor leptons (ee or $\mu\mu$) and two quarks. The search is performed with the CMS experiment at the CERN LHC using a data sample of proton-proton collisions at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$. The search covers two regions of phase space, one where the decay products of the heavy neutrino are merged into a single large-area jet, and one where the decay products are well separated. The expected signal is characterized by an excess in the invariant mass distribution of the final-state objects. No significant excess over the standard model background expectations is observed. The observations are interpreted as upper limits on the product of W$_\mathrm{R}$ production cross sections and branching fractions assuming that couplings are identical to those of the standard model W boson. For N masses $m_\mathrm{N}$ equal to half the W$_\mathrm{R}$ mass $m_\mathrm{W_R}$ ($m_\mathrm{N}$ = 0.2 TeV), $m_\mathrm{W_R}$ is excluded at 95% confidence level up to 4.7 (4.8) and 5.0 (5.4) TeV for the electron and muon channels, respectively. This analysis provides the most stringent limits on the W$_\mathrm{R}$ mass to date.

0 data tables match query

Version 2
Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$

The CMS collaboration
CMS-PAS-EXO-20-004, 2021.
Inspire Record 1869138 DOI 10.17182/hepdata.106059

A search is presented for new particles produced in proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$ at the LHC, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of $101~\mathrm{fb}^{-1}$, collected in 2017$-$2018 with the CMS detector. Separate categories are defined for events with narrow jets from initial-state radiation and with large-radius jets consistent with a hadronic decay of a W or a Z boson. Novel machine learning techniques are used to identify hadronic W and Z boson decays. The analysis is combined with an earlier search based on a data sample corresponding to an integrated luminosity of $36~\mathrm{fb}^{-1}$, collected in 2016. No significant excess of events is observed with respect to the standard model background expectation, as determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on gravitons in models with large extra dimensions. Several of the new limits are the most restrictive to date.

0 data tables match query

Version 2
Search for disappearing tracks in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 806 (2020) 135502, 2020.
Inspire Record 1790827 DOI 10.17182/hepdata.95354

A search is presented for long-lived charged particles that decay within the volume of the silicon tracker of the CMS experiment. Such particles can produce events with an isolated track that is missing hits in the outermost layers of the silicon tracker, and is also associated with little energy deposited in the calorimeters and no hits in the muon detectors. The search for events with this "disappearing track" signature is performed in a sample of proton-proton collisions recorded by the CMS experiment at the LHC with a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 101 fb$^{-1}$ recorded in 2017 and 2018. The observation of 48 events is consistent with the estimated background of 47.8 $_{-2.3}^{+2.7}$ (stat) $\pm$ 8.1 (syst) events. Upper limits are set on chargino production in the context of an anomaly-mediated supersymmetry breaking model for purely wino and higgsino neutralino scenarios. At 95% confidence level, the first constraint is placed on chargino masses in the higgsino case, excluding below 750 (175) GeV for a lifetime of 3 (0.05) ns. In the wino case, the results of this search are combined with a previous CMS search to produce a result representing the complete LHC data set recorded in 2015-2018, the most stringent constraints to date. At 95% confidence level, chargino masses in the wino case are excluded below 884 (474) GeV for a lifetime of 3 (0.2) ns.

0 data tables match query

Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum

The CMS collaboration Collaboration, The Cms ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 10 (2019) 244, 2019.
Inspire Record 1749379 DOI 10.17182/hepdata.90835

Results are reported from a search for supersymmetric particles in the final state with multiple jets and large missing transverse momentum. The search uses a sample of proton-proton collisions at $\sqrt{s} =$ 13 TeV collected with the CMS detector in 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$, representing essentially the full LHC Run 2 data sample. The analysis is performed in a four-dimensional search region defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No significant excess in the event yield is observed relative to the expected background contributions from standard model processes. Limits on the pair production of gluinos and squarks are obtained in the framework of simplified models for supersymmetric particle production and decay processes. Assuming the lightest supersymmetric particle to be a neutralino, lower limits on the gluino mass as large as 2000 to 2310 GeV are obtained at 95% confidence level, while lower limits on the squark mass as large as 1190 to 1630 GeV are obtained, depending on the production scenario.

0 data tables match query

Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2020) 051, 2020.
Inspire Record 1764474 DOI 10.17182/hepdata.91969

A search for physics beyond the standard model in events with at least three charged leptons (electrons or muons) is presented. The data sample corresponds to an integrated luminosity of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, collected with the CMS detector at the LHC in 2016-2018. The two targeted signal processes are pair production of type-III seesaw heavy fermions and production of a light scalar or pseudoscalar boson in association with a pair of top quarks. The heavy fermions may be manifested as an excess of events with large values of leptonic transverse momenta or missing transverse momentum. The light scalars or pseudoscalars may create a localized excess in the dilepton mass spectra. The results exclude heavy fermions of the type-III seesaw model for masses below 880 GeV at 95% confidence level in the scenario of equal branching fractions to each lepton flavor. This is the most restrictive limit on the flavor-democratic scenario of the type-III seesaw model to date. Assuming a Yukawa coupling of unit strength to top quarks, branching fractions of new scalar (pseudoscalar) bosons to dielectrons or dimuons above 0.004 (0.03) and 0.04 (0.03) are excluded at 95% confidence level for masses in the range 15-75 and 108-340 GeV, respectively. These are the first limits in these channels on an extension of the standard model with scalar or pseudoscalar particles.

0 data tables match query

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 398-423, 2019.
Inspire Record 1709317 DOI 10.17182/hepdata.91235

A search for exotic decays of the Higgs boson to a pair of light pseudoscalar particles a$_1$ is performed under the hypothesis that one of the pseudoscalars decays to a pair of opposite sign muons and the other decays to b$\overline{\mathrm{b}}$. Such signatures are predicted in a number of extensions of the standard model (SM), including next-to-minimal supersymmetry and two-Higgs-doublet models with an additional scalar singlet. The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated with the CMS experiment at the CERN LHC in 2016 at a centre-of-mass energy of 13 TeV. No statistically significant excess is observed with respect to the SM backgrounds in the search region for pseudoscalar masses from 20 GeV to half of the Higgs boson mass. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction, $\sigma_{\mathrm{h}}\mathcal{B}$(h $\to$ a$_1$ a$_1$ $\to$ $\mu^+\mu^-\mathrm{b}\bar{\mathrm{b}}$), ranging from 5 to 33 fb, depending on the pseudoscalar mass. Corresponding limits on the branching fraction, assuming the SM prediction for $\sigma_{\mathrm{h}}$, are (1$-$7)$\times$ 10$^{-4}$.

0 data tables match query

Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 795 (2019) 76-99, 2019.
Inspire Record 1704960 DOI 10.17182/hepdata.84026

A search is presented for dark matter in proton-proton collisions at a center-of-mass energy of $\sqrt{s} =$ 13 TeV using events with at least one high transverse momentum ($p_\mathrm{T}$) muon, at least one high-$p_\mathrm{T}$ jet, and large missing transverse momentum. The data were collected with the CMS detector at the CERN LHC in 2016 and 2017, and correspond to an integrated luminosity of 77.4 fb$^{-1}$. In the examined scenario, a pair of scalar leptoquarks is assumed to be produced. One leptoquark decays to a muon and a jet while the other decays to dark matter and low-$p_\mathrm{T}$ standard model particles. The signature for signal events would be significant missing transverse momentum from the dark matter in conjunction with a peak at the leptoquark mass in the invariant mass distribution of the highest $p_\mathrm{T}$ muon and jet. The data are observed to be consistent with the background predicted by the standard model. For the first benchmark scenario considered, dark matter masses up to 500 GeV are excluded for leptoquark masses $M_\mathrm{LQ}$ $\approx$ 1400 GeV, and up to 300 GeV for $M_\mathrm{LQ}$ $\approx$ 1500 GeV. For the second benchmark scenario, dark matter masses up to 600 GeV are excluded for $M_\mathrm{LQ}$ $\approx$ 1400 GeV.

0 data tables match query

Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 03 (2019) 082, 2019.
Inspire Record 1697570 DOI 10.17182/hepdata.85767

A search for the pair production of heavy fermionic partners of the top quark with charge 5/3 (X$_{5/3}$) is performed in proton-proton collisions at a center-of-mass energy of 13 TeV with the CMS detector at the CERN LHC. The data sample analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The X$_{5/3}$ quark is assumed always to decay into a top quark and a W boson. Both the right-handed and left-handed X$_{5/3}$ couplings to the W boson are considered. Final states with either a pair of same-sign leptons or a single lepton are studied. No significant excess of events is observed above the expected standard model background. Lower limits at 95% confidence level on the X$_{5/3}$ quark mass are set at 1.33 and 1.30 TeV respectively for the case of right-handed and left-handed couplings to W bosons in a combination of the same-sign dilepton and single-lepton final states.

0 data tables match query

Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 96 (2017) 032003, 2017.
Inspire Record 1594909 DOI 10.17182/hepdata.79412

A search for supersymmetry is presented based on multijet events with large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of sqrt(s) = 13 TeV. The data, corresponding to an integrated luminosity of 35.9 inverse femtobarns, were collected with the CMS detector at the CERN LHC in 2016. The analysis utilizes four-dimensional exclusive search regions defined in terms of the number of jets, the number of tagged bottom quark jets, the scalar sum of jet transverse momenta, and the magnitude of the vector sum of jet transverse momenta. No evidence for a significant excess of events is observed relative to the expectation from the standard model. Limits on the cross sections for the pair production of gluinos and squarks are derived in the context of simplified models. Assuming the lightest supersymmetric particle to be a weakly interacting neutralino, 95% confidence level lower limits on the gluino mass as large as 1800 to 1960 GeV are derived, and on the squark mass as large as 960 to 1390 GeV, depending on the production and decay scenario.

0 data tables match query