Cross-section measurements for the production of a $Z$ boson in association with high-transverse-momentum jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 080, 2023.
Inspire Record 2077570 DOI 10.17182/hepdata.114865

Cross-section measurements for a $Z$ boson produced in association with high-transverse-momentum jets ($p_{\mathrm{T}} \geq 100$ GeV) and decaying into a charged-lepton pair ($e^+e^-,\mu^+\mu^-$) are presented. The measurements are performed using proton-proton collisions at $\sqrt{s}=13$ TeV corresponding to an integrated luminosity of $139$ fb$^{-1}$ collected by the ATLAS experiment at the LHC. Measurements of angular correlations between the $Z$ boson and the closest jet are performed in events with at least one jet with $p_{\mathrm{T}} \geq 500$ GeV. Event topologies of particular interest are the collinear emission of a $Z$ boson in dijet events and a boosted $Z$ boson recoiling against a jet. Fiducial cross sections are compared with state-of-the-art theoretical predictions. The data are found to agree with next-to-next-to-leading-order predictions by NNLOjet and with the next-to-leading-order multi-leg generators MadGraph5_aMC@NLO and Sherpa.

0 data tables match query

Differential $t\bar{t}$ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb$^{-1}$ of ATLAS data

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 04 (2023) 080, 2023.
Inspire Record 2077575 DOI 10.17182/hepdata.115142

Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.

0 data tables match query

Measurement of $Z\gamma\gamma$ production in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 539, 2023.
Inspire Record 2593322 DOI 10.17182/hepdata.132903

Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.

0 data tables match query

Version 2
Measurements of prompt charm production cross-sections in $pp$ collisions at $\sqrt{s} = 13\,\mathrm{TeV}$

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 03 (2016) 159, 2016.
Inspire Record 1396331 DOI 10.17182/hepdata.73066

Production cross-sections of prompt charm mesons are measured with the first data from $pp$ collisions at the LHC at a centre-of-mass energy of $13\,\mathrm{TeV}$. The data sample corresponds to an integrated luminosity of $4.98 \pm 0.19\,\mathrm{pb}^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^{0}$, $D^{+}$, $D_{s}^{+}$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\mathrm{T}}$, and rapidity, $y$, and cover the range $0 < p_{\mathrm{T}} < 15\,\mathrm{GeV}/c$ and $2.0 < y < 4.5$. The inclusive cross-sections for the four mesons, including charge conjugation, within the range of $1 < p_{\mathrm{T}} < 8\,\mathrm{GeV}/c$ are found to be \begin{equation} \sigma(pp \to D^{0} X) = 2072 \pm 2 \pm 124\,\mu\mathrm{b}\\ \sigma(pp \to D^{+} X) = 834 \pm 2 \pm \phantom{1}78\,\mu\mathrm{b}\\ \sigma(pp \to D_{s}^{+} X) = 353 \pm 9 \pm \phantom{1}76\,\mu\mathrm{b}\\ \sigma(pp \to D^{*+} X) = 784 \pm 4 \pm \phantom{1}87\,\mu\mathrm{b} \end{equation} where the uncertainties are due to statistical and systematic uncertainties, respectively.

0 data tables match query

Dimuon Scaling Comparison at 44-{GeV} and 62-{GeV}

Antreasyan, D. ; Becker, U. ; Bellettini, G. ; et al.
Phys.Rev.Lett. 48 (1982) 302, 1982.
Inspire Record 168182 DOI 10.17182/hepdata.20610

Measurements of pp→μ+μ−+X at s=44 and 62 GeV are compared. The data are taken under identical conditions utilizing clean proton-proton collisions from the CERN intersecting storage rings and confirm scaling to 5%. The observed μ+μ− yield is a factor of 1.6±0.2 larger than estimated from a simple parton model but is consistent with QCD. The pT dependence of the muon pairs agrees well with expectations from QCD.

0 data tables match query

Study of jets produced in association with a W boson in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 85 (2012) 092002, 2012.
Inspire Record 1083318 DOI 10.17182/hepdata.39682

We report a study of final states containing a W boson and hadronic jets, produced in proton-proton collisions at a center-of-mass energy of 7 TeV. The data were collected with the ATLAS detector at the CERN LHC and comprise the full 2010 data sample of 36 pb^-1. Cross sections are determined using both the electron and muon decay modes of the W boson and are presented as a function of inclusive jet multiplicity, N_jet, for up to five jets. At each multiplicity, cross sections are presented as a function of jet transverse momentum, the scalar sum of the transverse momenta of the charged lepton, missing transverse momentum, and all jets, the invariant mass spectra of jets, and the rapidity distributions of various combinations of leptons and final-state jets. The results, corrected for all detector effects and for all backgrounds such as diboson and top quark pair production, are compared with particle-level predictions from perturbative QCD. Leading-order multiparton event generators, normalized to the NNLO total cross section for inclusive W-boson production, describe the data reasonably well for all measured inclusive jet multiplicities. Next-to-leading-order calculations from MCFM, studied here for N_jet >= 2, and BlackHat-Sherpa, studied here for N_jet >= 4, are found to be mostly in good agreement with the data.

0 data tables match query

Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $\sqrt{s}$ = 8 TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 93 (2016) 032009, 2016.
Inspire Record 1397637 DOI 10.17182/hepdata.18108

The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for $t\bar{t}$ events in the lepton+jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-$k_t$ jet with radius parameter $R=1.0$ and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

0 data tables match query

Measurement of four-jet differential cross sections in $\sqrt{s}=8$ TeV proton-proton collisions using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 12 (2015) 105, 2015.
Inspire Record 1394679 DOI 10.17182/hepdata.18620

Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at $\sqrt{s} = 8$ TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-$k_{t}$ R=0.4 jets with the largest transverse momentum ($p_{T}$) within the rapidity range $|y|<2.8$ are well separated ($dR^{\rm min}_{4j}>0.65$), all have $p_{T}>64$ GeV, and include at least one jet with $p_{T} >100$ GeV. The dataset corresponds to an integrated luminosity of 20.3 $fb^{-1}$. The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

0 data tables match query

Measurements of four-lepton production in $pp$ collisions at $\sqrt{s}=$ 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 753 (2016) 552-572, 2016.
Inspire Record 1394865 DOI 10.17182/hepdata.18593

The four-lepton ($4\ell$, $\ell = e, \mu$) production cross section is measured in the mass range from 80 to 1000 GeV using 20.3 fb$^{-1}$ of data in $pp$ collisions at $\sqrt{s}=8$ TeV collected with the ATLAS detector at the LHC. The $4\ell$ events are produced in the decays of resonant $Z$ and Higgs bosons and the non-resonant $ZZ$ continuum originating from $q\bar q$, $gg$, and $qg$ initial states. A total of 476 signal candidate events are observed with a background expectation of $26.2 \pm 3.6$ events, enabling the measurement of the integrated cross section and the differential cross section as a function of the invariant mass and transverse momentum of the four-lepton system. In the mass range above $180$ GeV, assuming the theoretical constraint on the $q\bar q$ production cross section calculated with perturbative NNLO QCD and NLO electroweak corrections, the signal strength of the gluon-fusion component relative to its leading-order prediction is determined to be $\mu_{gg}=2.4 \pm 1.0 (stat.) \pm 0.5 (syst.)\pm 0.8 (theory)$.

0 data tables match query

Measurement of the $t\bar{t}$ production cross-section as a function of jet multiplicity and jet transverse momentum in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 01 (2015) 020, 2015.
Inspire Record 1304688 DOI 10.17182/hepdata.18665

The $t\bar{t}$ production cross-section dependence on jet multiplicity and jet transverse momentum is reported for proton--proton collisions at a centre-of-mass energy of 7 TeV in the single-lepton channel. The data were collected with the ATLAS detector at the CERN Large Hadron Collider and comprise the full 2011 data sample corresponding to an integrated luminosity of 4.6 fb$^{-1}$. Differential cross-sections are presented as a function of the jet multiplicity for up to eight jets using jet transverse momentum thresholds of 25, 40, 60, and 80 GeV, and as a function of jet transverse momentum up to the fifth jet. The results are shown after background subtraction and corrections for all detector effects, within a kinematic range closely matched to the experimental acceptance. Several QCD-based Monte Carlo models are compared with the results. Sensitivity to the parton shower modelling is found at the higher jet multiplicities, at high transverse momentum of the leading jet and in the transverse momentum spectrum of the fifth leading jet. The MC@NLO+HERWIG MC is found to predict too few events at higher jet multiplicities.

0 data tables match query