Inclusive b-hadron production cross section with muons in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 03 (2011) 090, 2011.
Inspire Record 884811 DOI 10.17182/hepdata.57723

A measurement of the b-hadron production cross section in proton-proton collisions at sqrt(s)=7 TeV is presented. The dataset, corresponding to 85 inverse nanobarns, was recorded with the CMS experiment at the LHC using a low-threshold single-muon trigger. Events are selected by the presence of a muon with transverse momentum greater than 6 GeV with respect to the beam direction and pseudorapidity less than 2.1. The transverse momentum of the muon with respect to the closest jet discriminates events containing b hadrons from background. The inclusive b-hadron production cross section is presented as a function of muon transverse momentum and pseudorapidity. The measured total cross section in the kinematic acceptance is sigma(pp to b+X to mu + X') =1.32 +/- 0.01 (stat) +/- 0.30 (syst) +/- 0.15 (lumi) microbarns.

0 data tables match query

Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2012) 084, 2012.
Inspire Record 1089835 DOI 10.17182/hepdata.58503

The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

0 data tables match query

Jet and underlying event properties as a function of particle multiplicity in proton-proton collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 73 (2013) 2674, 2013.
Inspire Record 1261026 DOI 10.17182/hepdata.68128

Characteristics of multi-particle production in proton-proton collisions at $\sqrt{s}$=7 TeV are studied as a function of the charged-particle multiplicity, $N_{ch}$. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum $p_T$ > 0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have $p_T$ > 5 GeV/c. The distributions of jet $p_T$, average $p_T$ of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of $N_{ch}$ and compared to the predictions of the PYTHIA and HERWIG event generators. Predictions without multi-parton interactions fail completely to describe the $N_{ch}$-dependence observed in the data. For increasing $N_{ch}$, PYTHIA systematically predicts higher jet rates and harder $p_T$ spectra than seen in the data, whereas HERWIG shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.

0 data tables match query

Version 2
Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 02 (2022) 142, 2022.
Inspire Record 1972986 DOI 10.17182/hepdata.115022

A measurement of the inclusive jet production in proton-proton collisions at the LHC at $\sqrt{s}$ = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum $p_\mathrm{T}$ and the absolute jet rapidity $\lvert y \rvert$. The anti-$k_\mathrm{T}$ clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet $p_\mathrm{T}$ from 97 GeV up to 3.1 TeV and $\lvert y \rvert\lt$ 2.0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb$^{-1}$ (33.5 fb$^{-1}$). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as $\alpha_\mathrm{S}$(Z) = 0.1170 $\pm$ 0.0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient $c_1$ of 4-quark contact interactions. Note added: in the Addendum to this paper, available as Appendix B in this document, an improved value of $\alpha_\mathrm{S}$(Z) = 0.1166 $\pm$ 0.0017 has been extracted. This result supersedes the number in the above abstract of the original publication.

0 data tables match query

Measurement and QCD analysis of double-differential inclusive jet cross-sections in pp collisions at sqrt(s) = 8 TeV and ratios to 2.76 and 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 03 (2017) 156, 2017.
Inspire Record 1487277 DOI 10.17182/hepdata.77222

A measurement of the double-differential inclusive jet cross section as a function of the jet transverse momentum pT and the absolute jet rapidity abs(y) is presented. Data from LHC proton-proton collisions at sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns, have been collected with the CMS detector. Jets are reconstructed using the anti-kT clustering algorithm with a size parameter of 0.7 in a phase space region covering jet pT from 74 GeV up to 2.5 TeV and jet absolute rapidity up to abs(y) = 3.0. The low-pT jet range between 21 and 74 GeV is also studied up to abs(y) = 4.7, using a dedicated data sample corresponding to an integrated luminosity of 5.6 inverse picobarns. The measured jet cross section is corrected for detector effects and compared with the predictions from perturbative QCD at next-to-leading order (NLO) using various sets of parton distribution functions (PDF). Cross section ratios to the corresponding measurements performed at 2.76 and 7 TeV are presented. From the measured double-differential jet cross section, the value of the strong coupling constant evaluated at the Z mass is alpha[S(M[Z]) = 0.1164 +0.0060 -0.0043, where the errors include the PDF, scale, nonperturbative effects and experimental uncertainties, using the CT10 NLO PDFs. Improved constraints on PDFs based on the inclusive jet cross section measurement are presented.

0 data tables match query

Measurement of B anti-B Angular Correlations based on Secondary Vertex Reconstruction at sqrt(s)=7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
JHEP 03 (2011) 136, 2011.
Inspire Record 889807 DOI 10.17182/hepdata.57695

A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.

0 data tables match query

Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M. ; Tumasyan, Armen ; et al.
Phys.Rev.Lett. 106 (2011) 201804, 2011.
Inspire Record 889175 DOI 10.17182/hepdata.57092

Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at sqrt(s) = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV (6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.

0 data tables match query

Measurement of W$^\pm\gamma$ differential cross sections in proton-proton collisions at $\sqrt{s}$ = 13 TeV and effective field theory constraints

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 105 (2022) 052003, 2022.
Inspire Record 1978840 DOI 10.17182/hepdata.115354

Differential cross section measurements of W$^\pm\gamma$ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV are presented. The data set used in this study was collected with the CMS detector at the CERN LHC in 2016-2018 with an integrated luminosity of 138 fb$^{-1}$. Candidate events containing an electron or muon, a photon, and missing transverse momentum are selected. The measurements are compared with standard model predictions computed at next-to-leading and next-to-next-to-leading orders in perturbative quantum chromodynamics. Constraints on the presence of TeV-scale new physics affecting the WW$\gamma$ vertex are determined within an effective field theory framework, focusing on the $\mathcal{O}_\mathrm{3W}$ operator. A simultaneous measurement of the photon transverse momentum and the azimuthal angle of the charged lepton in a special reference frame is performed. This two-dimensional approach provides up to a factor of ten more sensitivity to the interference between the standard model and the $\mathcal{O}_\mathrm{3W}$ contribution than using the transverse momentum alone.

0 data tables match query

Measurement of associated Z + charm production in proton-proton collisions at $\sqrt{s} = $ 8 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 78 (2018) 287, 2018.
Inspire Record 1634835 DOI 10.17182/hepdata.85868

A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with $p_{\rm T}^{\ell} > $ 20 GeV, ${|\eta^{\ell}|} < $ 2.1, 71 $ < m_{\ell\ell} < $ 111 GeV, and heavy flavour jets with $p_{\rm T}^{{\rm jet}} > $ 25 GeV and ${|\eta^{{\rm jet}}|} < $ 2.5. The Z + c production cross section is measured to be $\sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{c} + \mathrm{X}) {\cal B}(\mathrm{Z} \rightarrow \ell^+\ell^-) = $ 8.8 $ \pm $ 0.5 (stat) $ \pm $ 0.6 (syst) pb. The ratio of the Z + c and Z + b production cross sections is measured to be $\sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{c} + \mathrm{X}) / \sigma({\mathrm{p}}{\mathrm{p}} \rightarrow \mathrm{Z} + \mathrm{b} + \mathrm{X}) = $ 2.0 $ \pm $ 0.2 (stat) $ \pm $ 0.2 (syst). The Z + c production cross section and the cross section ratio are also measured as a function of the transverse momentum of the Z boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.

0 data tables match query

Measurement of associated production of a W boson and a charm quark in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Eur.Phys.J.C 79 (2019) 269, 2019.
Inspire Record 1705068 DOI 10.17182/hepdata.89879

Measurements are presented of associated production of a W boson and a charm quark (W+c) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 35.7 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The W bosons are identified by their decay into a muon and a neutrino. The charm quarks are tagged via the full reconstruction of D$^*$(2010)$^\pm$ mesons that decay via D$^*$(2010)$^\pm \to$ D$^0$ + $\pi^\pm \to$ K$^{\mp}$ + $\pi^\pm$ + $\pi^\pm$. A cross section is measured in the fiducial region defined by the muon transverse momentum $p_{T}^{\mu} >$ 26 GeV, muon pseudorapidity $|\eta^{\mu}| <$ 2.4, and charm quark transverse momentum $p_{T}^{c} >$ 5 GeV. The inclusive cross section for this kinematic range is $\sigma$(W+c) = 1026 $\pm$ 31 (stat) $\substack{+76\\-72}$ (syst) pb. The cross section is also measured differentially as a function of the pseudorapidity of the muon from the W boson decay. These measurements are compared with theoretical predictions and are used to probe the strange quark content of the proton.

0 data tables match query